Answer
Verified
493.2k+ views
Hint – In order to solve this question we need to know that nth term of HP is inverse of nth term of AP. After using this concept as per the conditions given we will get the answer.
Complete step-by-step answer:
As we know nth term of HP is inverse of nth term of AP.
It is given that \[{{\text{m}}^{{\text{th}}}}\] the term of HP is n.
So, ${{\text{T}}_{\text{m}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{a + (m - 1)d}}}}{\text{ = n}}$ ……(1)
And ${{\text{T}}_{\text{n}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{a + (n - 1)d}}}}{\text{ = m}}$ ……(2)
Equation (1) can be written as:
${\text{a + (m - 1)d = }}\dfrac{{\text{1}}}{{\text{n}}}$= a + md – d ……(3)
Equation (2) can be written as:
${\text{a + (n - 1)d = }}\dfrac{{\text{1}}}{{\text{m}}}$= a + nd – d ……(4)
On subtracting equation (4) from (3) we get the new equation as:
a – a +md – nd – d + d = $\dfrac{{\text{1}}}{{\text{n}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{m}}}$
(m - n)d = $\dfrac{{\text{1}}}{{\text{n}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{m}}}$
(m - n)d = $\dfrac{{{\text{m - n}}}}{{{\text{mn}}}}$
Then we get, d = $\dfrac{{\text{1}}}{{{\text{mn}}}}$
On putting the value of d in equation (3) we get the new equation as:
$
{\text{a + (n - 1)}}\dfrac{{\text{1}}}{{{\text{mn}}}}{\text{ = }}\dfrac{{\text{1}}}{{\text{m}}} \\
{\text{a = }}\dfrac{{\text{1}}}{{\text{m}}}{\text{ - (n - 1)}}\dfrac{{\text{1}}}{{{\text{mn}}}} \\
{\text{a = }}\dfrac{{{\text{n - n + 1}}}}{{{\text{mn}}}} \\
{\text{a = }}\dfrac{{\text{1}}}{{{\text{mn}}}} \\
$
Now we have first term and common difference so now we can find the
(m + n)th term of HP.
${{\text{T}}_{{\text{m + n}}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{a + (m + n - 1)d}}}}$
On putting the value of a and d in above equation we get,
$
{{\text{T}}_{{\text{m + n}}}}{\text{ = }}\dfrac{{\text{1}}}{{\dfrac{{\text{1}}}{{{\text{mn}}}}{\text{ + (m + n - 1)}}\dfrac{{\text{1}}}{{{\text{mn}}}}}} \\
{{\text{T}}_{{\text{m + n}}}}{\text{ = }}\dfrac{{\text{1}}}{{\dfrac{{{\text{1 + m + n - 1}}}}{{{\text{mn}}}}}} \\
{{\text{T}}_{{\text{m + n}}}}{\text{ = }}\dfrac{{{\text{mn}}}}{{{\text{m + n}}}} \\
$
So, we get the \[{\left( {{\text{m + n}}} \right)^{{\text{th}}}}\] term of the HP.
Note – Whenever you face such types of problems you have used the concept that nth term of HP is inverse of nth term of AP. Here in this question we have made equations of AP with the help of given HP then solved it to find the first term and common difference then you can find any of the terms with the help of first term and common difference. Proceeding like this will take you to the right solution of the question asked.
Complete step-by-step answer:
As we know nth term of HP is inverse of nth term of AP.
It is given that \[{{\text{m}}^{{\text{th}}}}\] the term of HP is n.
So, ${{\text{T}}_{\text{m}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{a + (m - 1)d}}}}{\text{ = n}}$ ……(1)
And ${{\text{T}}_{\text{n}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{a + (n - 1)d}}}}{\text{ = m}}$ ……(2)
Equation (1) can be written as:
${\text{a + (m - 1)d = }}\dfrac{{\text{1}}}{{\text{n}}}$= a + md – d ……(3)
Equation (2) can be written as:
${\text{a + (n - 1)d = }}\dfrac{{\text{1}}}{{\text{m}}}$= a + nd – d ……(4)
On subtracting equation (4) from (3) we get the new equation as:
a – a +md – nd – d + d = $\dfrac{{\text{1}}}{{\text{n}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{m}}}$
(m - n)d = $\dfrac{{\text{1}}}{{\text{n}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{m}}}$
(m - n)d = $\dfrac{{{\text{m - n}}}}{{{\text{mn}}}}$
Then we get, d = $\dfrac{{\text{1}}}{{{\text{mn}}}}$
On putting the value of d in equation (3) we get the new equation as:
$
{\text{a + (n - 1)}}\dfrac{{\text{1}}}{{{\text{mn}}}}{\text{ = }}\dfrac{{\text{1}}}{{\text{m}}} \\
{\text{a = }}\dfrac{{\text{1}}}{{\text{m}}}{\text{ - (n - 1)}}\dfrac{{\text{1}}}{{{\text{mn}}}} \\
{\text{a = }}\dfrac{{{\text{n - n + 1}}}}{{{\text{mn}}}} \\
{\text{a = }}\dfrac{{\text{1}}}{{{\text{mn}}}} \\
$
Now we have first term and common difference so now we can find the
(m + n)th term of HP.
${{\text{T}}_{{\text{m + n}}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{a + (m + n - 1)d}}}}$
On putting the value of a and d in above equation we get,
$
{{\text{T}}_{{\text{m + n}}}}{\text{ = }}\dfrac{{\text{1}}}{{\dfrac{{\text{1}}}{{{\text{mn}}}}{\text{ + (m + n - 1)}}\dfrac{{\text{1}}}{{{\text{mn}}}}}} \\
{{\text{T}}_{{\text{m + n}}}}{\text{ = }}\dfrac{{\text{1}}}{{\dfrac{{{\text{1 + m + n - 1}}}}{{{\text{mn}}}}}} \\
{{\text{T}}_{{\text{m + n}}}}{\text{ = }}\dfrac{{{\text{mn}}}}{{{\text{m + n}}}} \\
$
So, we get the \[{\left( {{\text{m + n}}} \right)^{{\text{th}}}}\] term of the HP.
Note – Whenever you face such types of problems you have used the concept that nth term of HP is inverse of nth term of AP. Here in this question we have made equations of AP with the help of given HP then solved it to find the first term and common difference then you can find any of the terms with the help of first term and common difference. Proceeding like this will take you to the right solution of the question asked.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE