Answer
Verified
445.8k+ views
Hint:We know that density is the mass per volume. As it is mass per volume so its unit is gram per centimetre cube. Avogadro number is the number of molecules in one mole of the substance i.e. $6.022 \times {10^{23}}$.
Complete step by step answer:
First of all let us discuss density and Avogadro numbers.
Density: It is defined as the mass per volume. Its unit is $gram/c{m^3}$.
Avogadro number: One mole of a substance contains $6.022 \times {10^{23}}$number of molecules. This number is known as Avogadro number. Its unit is per mole $(mo{l^{ - 1}})$. If we want to calculate the number of particles in a mole then multiply the number of moles with avogadro's number. And if we want to calculate the number of moles in a given number of particles then divide the number of particles with the Avogadro number.
Molar mass: The mass of an atom in an element, is known as molar mass. It is the sum of the number of neutrons and the number of protons present in the atom of an element.
Atomic number: It is defined as the number of protons present in the atom of an element.
Isotopes: They are those elements which have the same atomic number but different mass number i.e. they have the same number of protons but different numbers of neutrons. For example: Carbon$ - 12$ and carbon$ - 14$.
Isobars: They are those elements which have the same atomic mass but different atomic number. For example: calcium and potassium both have mass equal to $40$.
Now, coming to the question we are given with the density and the molar mass. So we can calculate the volume I.e. mass divided by density.
${\text{Volume = }}\dfrac{{{\text{mass}}}}{{{\text{density}}}} = \dfrac{{260}}{{1.5}} = 173.33gc{m^{ - 3}}$
Now, we know that one mole contains $6.022 \times {10^{23}}$molecules.
Average volume occupied is defined as volume divided by Avogadro number.
$\dfrac{{173.33}}{{6.02 \times {{10}^{23}}}} \simeq 29 \times {10^{23}}$.
So option D is the correct option.
Note: Average volume occupied and volume occupied they both are different. Volume occupied is defined as volume occupied by the whole substance and average volume occupied is defined as volume occupied per molecule of an atom.
Complete step by step answer:
First of all let us discuss density and Avogadro numbers.
Density: It is defined as the mass per volume. Its unit is $gram/c{m^3}$.
Avogadro number: One mole of a substance contains $6.022 \times {10^{23}}$number of molecules. This number is known as Avogadro number. Its unit is per mole $(mo{l^{ - 1}})$. If we want to calculate the number of particles in a mole then multiply the number of moles with avogadro's number. And if we want to calculate the number of moles in a given number of particles then divide the number of particles with the Avogadro number.
Molar mass: The mass of an atom in an element, is known as molar mass. It is the sum of the number of neutrons and the number of protons present in the atom of an element.
Atomic number: It is defined as the number of protons present in the atom of an element.
Isotopes: They are those elements which have the same atomic number but different mass number i.e. they have the same number of protons but different numbers of neutrons. For example: Carbon$ - 12$ and carbon$ - 14$.
Isobars: They are those elements which have the same atomic mass but different atomic number. For example: calcium and potassium both have mass equal to $40$.
Now, coming to the question we are given with the density and the molar mass. So we can calculate the volume I.e. mass divided by density.
${\text{Volume = }}\dfrac{{{\text{mass}}}}{{{\text{density}}}} = \dfrac{{260}}{{1.5}} = 173.33gc{m^{ - 3}}$
Now, we know that one mole contains $6.022 \times {10^{23}}$molecules.
Average volume occupied is defined as volume divided by Avogadro number.
$\dfrac{{173.33}}{{6.02 \times {{10}^{23}}}} \simeq 29 \times {10^{23}}$.
So option D is the correct option.
Note: Average volume occupied and volume occupied they both are different. Volume occupied is defined as volume occupied by the whole substance and average volume occupied is defined as volume occupied per molecule of an atom.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
What percentage of the solar systems mass is found class 8 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference Between Plant Cell and Animal Cell
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE