Answer
Verified
446.1k+ views
Hint: Rationalize the given function and put $\dfrac{1}{x} = 0$ in the obtained result because $x \to - \infty $ .Then sove to find the value of a and b.
Complete step-by-step answer:
Given function is $\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} - \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right) = 2$
It is in $\infty - \infty $ indeterminate form. So we can solve it by rationalizing.
On rationalizing the given function we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} - \sqrt {{x^6} - 2{x^5} + {x^3} + 1} } \right) \times \left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}}{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}} = 2$ We know that ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$ , On applying this in the above equation we get,
$ \Rightarrow $ \[\mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} } \right)}^2} - {{\left( {\sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}^2}} \right)}}{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}} = 2\]
On solving we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{{x^6} + a{x^5} + b{x^3} - cx + d - \left( {{x^6} - 2{x^5} + {x^3} + x + 1} \right)}}{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}} = 2$
On multiplying the negative sign inside the bracket,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{{x^6} + a{x^5} + b{x^3} - cx + d - {x^6} + 2{x^5} - {x^3} - x - 1}}{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}} = 2$
On taking the coefficients of the same terms common we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {a + 2} \right){x^5} + \left( {b - 1} \right){x^3} - \left( {c + 1} \right)x + d - 1}}{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}} = 2$
On taking ${x^6}$ common in the denominator we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {a + 2} \right){x^5} + \left( {b - 1} \right){x^3} - \left( {c + 1} \right)x + d - 1}}{{{x^3}\left( {\sqrt {1 + \dfrac{a}{x} + \dfrac{b}{{{x^3}}} - \dfrac{c}{{{x^5}}} + \dfrac{d}{{{x^6}}}} + \sqrt {1 - \dfrac{2}{x} + \dfrac{1}{{{x^3}}} + \dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^6}}}} } \right)}} = 2$
On taking ${x^3}$ common from numerator we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{{x^3}\left[ {\left( {a + 2} \right){x^2} + \left( {b - 1} \right) - \dfrac{{\left( {c + 1} \right)}}{{{x^2}}} + \dfrac{{d - 1}}{{{x^3}}}} \right]}}{{{x^3}\left( {\sqrt {1 + \dfrac{a}{x} + \dfrac{b}{{{x^3}}} - \dfrac{c}{{{x^5}}} + \dfrac{d}{{{x^6}}}} + \sqrt {1 - \dfrac{2}{x} + \dfrac{1}{{{x^3}}} + \dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^6}}}} } \right)}} = 2$
On simplifying we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left[ {\left( {a + 2} \right){x^2} + \left( {b - 1} \right) - \dfrac{{\left( {c + 1} \right)}}{{{x^2}}} + \dfrac{{d - 1}}{{{x^3}}}} \right]}}{{\left( {\sqrt {1 + \dfrac{a}{x} + \dfrac{b}{{{x^3}}} - \dfrac{c}{{{x^5}}} + \dfrac{d}{{{x^6}}}} + \sqrt {1 - \dfrac{2}{x} + \dfrac{1}{{{x^3}}} + \dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^6}}}} } \right)}} = 2$
Now since it is given that $x \to - \infty \Rightarrow \dfrac{1}{x} = 0$
So all the values multiplied with $\dfrac{1}{x}$ in the denominator and numerator will be zero and for the limit to be finite as x tends to infinite the quantity $a - 2 = 0$ $ \Rightarrow a = 2$ .So the limit will only exist for $b - 1$
Then on putting the values we get,
$ \Rightarrow \dfrac{{\left[ {\left( {b - 1} \right)} \right]}}{{\left( {\sqrt 1 + \sqrt 1 } \right)}} = 2$
On simplifying we get,
$
\Rightarrow \dfrac{{b - 1}}{2} = 2 \\
\Rightarrow b - 1 = 4 \\
\Rightarrow b = 5 \\
$
So, only option C is correct.
Note: Here we rationalize the function to make it easier to solve the limit as the function gives indeterminate form on putting the limit. Indeterminate forms are such forms which cannot be determined so we try to find another method to change the indeterminate form. Here we have used rationalization. In some questions, we use L’ Hospital rule which states that the limit of derivative of the given function is equal to the limit of indeterminate form.
Complete step-by-step answer:
Given function is $\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} - \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right) = 2$
It is in $\infty - \infty $ indeterminate form. So we can solve it by rationalizing.
On rationalizing the given function we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} - \sqrt {{x^6} - 2{x^5} + {x^3} + 1} } \right) \times \left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}}{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}} = 2$ We know that ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$ , On applying this in the above equation we get,
$ \Rightarrow $ \[\mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} } \right)}^2} - {{\left( {\sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}^2}} \right)}}{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}} = 2\]
On solving we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{{x^6} + a{x^5} + b{x^3} - cx + d - \left( {{x^6} - 2{x^5} + {x^3} + x + 1} \right)}}{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}} = 2$
On multiplying the negative sign inside the bracket,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{{x^6} + a{x^5} + b{x^3} - cx + d - {x^6} + 2{x^5} - {x^3} - x - 1}}{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}} = 2$
On taking the coefficients of the same terms common we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {a + 2} \right){x^5} + \left( {b - 1} \right){x^3} - \left( {c + 1} \right)x + d - 1}}{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}} = 2$
On taking ${x^6}$ common in the denominator we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {a + 2} \right){x^5} + \left( {b - 1} \right){x^3} - \left( {c + 1} \right)x + d - 1}}{{{x^3}\left( {\sqrt {1 + \dfrac{a}{x} + \dfrac{b}{{{x^3}}} - \dfrac{c}{{{x^5}}} + \dfrac{d}{{{x^6}}}} + \sqrt {1 - \dfrac{2}{x} + \dfrac{1}{{{x^3}}} + \dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^6}}}} } \right)}} = 2$
On taking ${x^3}$ common from numerator we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{{x^3}\left[ {\left( {a + 2} \right){x^2} + \left( {b - 1} \right) - \dfrac{{\left( {c + 1} \right)}}{{{x^2}}} + \dfrac{{d - 1}}{{{x^3}}}} \right]}}{{{x^3}\left( {\sqrt {1 + \dfrac{a}{x} + \dfrac{b}{{{x^3}}} - \dfrac{c}{{{x^5}}} + \dfrac{d}{{{x^6}}}} + \sqrt {1 - \dfrac{2}{x} + \dfrac{1}{{{x^3}}} + \dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^6}}}} } \right)}} = 2$
On simplifying we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left[ {\left( {a + 2} \right){x^2} + \left( {b - 1} \right) - \dfrac{{\left( {c + 1} \right)}}{{{x^2}}} + \dfrac{{d - 1}}{{{x^3}}}} \right]}}{{\left( {\sqrt {1 + \dfrac{a}{x} + \dfrac{b}{{{x^3}}} - \dfrac{c}{{{x^5}}} + \dfrac{d}{{{x^6}}}} + \sqrt {1 - \dfrac{2}{x} + \dfrac{1}{{{x^3}}} + \dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^6}}}} } \right)}} = 2$
Now since it is given that $x \to - \infty \Rightarrow \dfrac{1}{x} = 0$
So all the values multiplied with $\dfrac{1}{x}$ in the denominator and numerator will be zero and for the limit to be finite as x tends to infinite the quantity $a - 2 = 0$ $ \Rightarrow a = 2$ .So the limit will only exist for $b - 1$
Then on putting the values we get,
$ \Rightarrow \dfrac{{\left[ {\left( {b - 1} \right)} \right]}}{{\left( {\sqrt 1 + \sqrt 1 } \right)}} = 2$
On simplifying we get,
$
\Rightarrow \dfrac{{b - 1}}{2} = 2 \\
\Rightarrow b - 1 = 4 \\
\Rightarrow b = 5 \\
$
So, only option C is correct.
Note: Here we rationalize the function to make it easier to solve the limit as the function gives indeterminate form on putting the limit. Indeterminate forms are such forms which cannot be determined so we try to find another method to change the indeterminate form. Here we have used rationalization. In some questions, we use L’ Hospital rule which states that the limit of derivative of the given function is equal to the limit of indeterminate form.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE