Answer

Verified

414k+ views

**Hint:**Here we solve the terms in the bracket by converting both numerator and denominator in form of their factors and then cancelling out the same terms to obtain a simpler form. Then we apply the limit to the fraction by breaking the fraction into multiplication of two fractions.

* Limit of a function means the value of the function as it approaches the limit, i.e. \[\mathop {\lim }\limits_{x \to a} f(x) = f(a)\]

* \[\mathop {\lim }\limits_{x \to p} (xy) = \mathop {\lim }\limits_{x \to p} x \times \mathop {\lim }\limits_{x \to p} y\]

* \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x} = 1\]

**Complete step-by-step answer:**

We have to find the value of k such that \[\mathop {\lim }\limits_{x \to 2} \dfrac{{\tan (x - 2)\{ {x^2} + (k - 2)x - 2k\} }}{{{x^2} - 4x + 4}} = 5\].

First we write the denominator of the fraction in form of its factors. We can write

\[{x^2} - 4x + 4 = {(x)^2} + {(2)^2} - 2(2)(x)\]

This is of the form \[{a^2} + {b^2} - 2ab\]

By comparing the above equation to \[{(a - b)^2} = {a^2} + {b^2} - 2ab\], we can see that the value of \[a = x,b = 2\].

\[{x^2} - 4x + 4 = {(x - 2)^2}\] … (1)

Now we solve the numerator of the fraction.

We have \[\tan (x - 2)\{ {x^2} + (k - 2)x - 2k\} \] as the numerator of the fraction.

Opening the brackets by multiplying the terms we get

\[

\Rightarrow \tan (x - 2)\{ {x^2} + (k - 2)x - 2k\} = \tan (x - 2)\{ {x^2} + kx - 2x - 2k\} \\

\Rightarrow \tan (x - 2)\{ {x^2} + (k - 2)x - 2k\} = \tan (x - 2)\{ {x^2} - 2x + kx - 2k\} \\

\]

Now take x common from the first two terms and k common from the last two terms in the bracket.

\[ \Rightarrow \tan (x - 2)\{ {x^2} + (k - 2)x - 2k\} = \tan (x - 2)\{ x(x - 2) + k(x - 2)\} \]

Pairing the factors we get

\[ \Rightarrow \tan (x - 2)\{ {x^2} + (k - 2)x - 2k\} = \tan (x - 2)\{ (x - 2)(x + k)\} \] … (2)

Substituting equation 1 and 2 in given equation, we get

\[ \Rightarrow \dfrac{{\tan (x - 2)\{ (x - 2)(x + k)\} }}{{{{(x - 2)}^2}}} = \dfrac{{\tan (x - 2)}}{{(x - 2)}} \times \dfrac{{(x - 2)(x + k)}}{{(x - 2)}}\]

Cancel out the same terms from numerator and denominator.

\[ \Rightarrow \dfrac{{\tan (x - 2)\{ (x - 2)(x + k)\} }}{{{{(x - 2)}^2}}} = \dfrac{{\tan (x - 2)}}{{(x - 2)}} \times (x + k)\]

Taking limit on both sides we get

\[ \Rightarrow \mathop {\lim }\limits_{x \to 2} \dfrac{{\tan (x - 2)\{ {x^2} + (k - 2)x - 2k\} }}{{{x^2} - 4x + 4}} = \mathop {\lim }\limits_{x \to 2} \dfrac{{\tan (x - 2)}}{{(x - 2)}} \times (x + k)\]

We know that we can separate the limits as \[\mathop {\lim }\limits_{x \to p} (xy) = \mathop {\lim }\limits_{x \to p} x \times \mathop {\lim }\limits_{x \to p} y\]

\[ \Rightarrow \mathop {\lim }\limits_{x \to 2} \dfrac{{\tan (x - 2)\{ {x^2} + (k - 2)x - 2k\} }}{{{x^2} - 4x + 4}} = \mathop {\lim }\limits_{x \to 2} \dfrac{{\tan (x - 2)}}{{(x - 2)}} \times \mathop {\lim }\limits_{x \to 2} (x + k)\] … (3)

Now we know \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x} = 1\]

So, we can apply this property to the first term because \[x \to 2 = x - 2 \to 0\] and as the function is the same as the limit we can apply the property.

\[ \Rightarrow \mathop {\lim }\limits_{x \to 2} \dfrac{{\tan (x - 2)}}{{(x - 2)}} = 1\]

Also, \[\mathop {\lim }\limits_{x \to 2} (x + k) = (k + 2)\]

Substituting the values in equation (3) we get

\[ \Rightarrow \mathop {\lim }\limits_{x \to 2} \dfrac{{\tan (x - 2)\{ {x^2} + (k - 2)x - 2k\} }}{{{x^2} - 4x + 4}} = 1 \times (k + 2) = k + 2\]

Now from the statement of the question we know the value of LHS is equal to 5.

\[

\Rightarrow k + 2 = 5 \\

\Rightarrow k = 5 - 2 \\

\Rightarrow k = 3 \\

\]

**So, the correct answer is “Option C”.**

**Note:**Students are likely to make mistakes while calculating the limit of the tan function and might substitute the value of x as 2 in the fraction which will give us the answer 0 which is wrong. Keep in mind for fractions like \[\dfrac{{\tan x}}{x}, \dfrac{{\sin x}}{x}\] we always use this way of finding the limit.

Recently Updated Pages

Cryolite and fluorspar are mixed with Al2O3 during class 11 chemistry CBSE

Select the smallest atom A F B Cl C Br D I class 11 chemistry CBSE

The best reagent to convert pent 3 en 2 ol and pent class 11 chemistry CBSE

Reverse process of sublimation is aFusion bCondensation class 11 chemistry CBSE

The best and latest technique for isolation purification class 11 chemistry CBSE

Hydrochloric acid is a Strong acid b Weak acid c Strong class 11 chemistry CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

The Buddhist universities of Nalanda and Vikramshila class 7 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Name 10 Living and Non living things class 9 biology CBSE

Which are the Top 10 Largest Countries of the World?

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Who founded the Nalanda University 1 Mauryan 2 Guptas class 6 social science CBSE