Answer

Verified

456.6k+ views

**Hint:**Here we solve the terms in the bracket by converting both numerator and denominator in form of their factors and then cancelling out the same terms to obtain a simpler form. Then we apply the limit to the fraction by breaking the fraction into multiplication of two fractions.

* Limit of a function means the value of the function as it approaches the limit, i.e. \[\mathop {\lim }\limits_{x \to a} f(x) = f(a)\]

* \[\mathop {\lim }\limits_{x \to p} (xy) = \mathop {\lim }\limits_{x \to p} x \times \mathop {\lim }\limits_{x \to p} y\]

* \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x} = 1\]

**Complete step-by-step answer:**

We have to find the value of k such that \[\mathop {\lim }\limits_{x \to 2} \dfrac{{\tan (x - 2)\{ {x^2} + (k - 2)x - 2k\} }}{{{x^2} - 4x + 4}} = 5\].

First we write the denominator of the fraction in form of its factors. We can write

\[{x^2} - 4x + 4 = {(x)^2} + {(2)^2} - 2(2)(x)\]

This is of the form \[{a^2} + {b^2} - 2ab\]

By comparing the above equation to \[{(a - b)^2} = {a^2} + {b^2} - 2ab\], we can see that the value of \[a = x,b = 2\].

\[{x^2} - 4x + 4 = {(x - 2)^2}\] … (1)

Now we solve the numerator of the fraction.

We have \[\tan (x - 2)\{ {x^2} + (k - 2)x - 2k\} \] as the numerator of the fraction.

Opening the brackets by multiplying the terms we get

\[

\Rightarrow \tan (x - 2)\{ {x^2} + (k - 2)x - 2k\} = \tan (x - 2)\{ {x^2} + kx - 2x - 2k\} \\

\Rightarrow \tan (x - 2)\{ {x^2} + (k - 2)x - 2k\} = \tan (x - 2)\{ {x^2} - 2x + kx - 2k\} \\

\]

Now take x common from the first two terms and k common from the last two terms in the bracket.

\[ \Rightarrow \tan (x - 2)\{ {x^2} + (k - 2)x - 2k\} = \tan (x - 2)\{ x(x - 2) + k(x - 2)\} \]

Pairing the factors we get

\[ \Rightarrow \tan (x - 2)\{ {x^2} + (k - 2)x - 2k\} = \tan (x - 2)\{ (x - 2)(x + k)\} \] … (2)

Substituting equation 1 and 2 in given equation, we get

\[ \Rightarrow \dfrac{{\tan (x - 2)\{ (x - 2)(x + k)\} }}{{{{(x - 2)}^2}}} = \dfrac{{\tan (x - 2)}}{{(x - 2)}} \times \dfrac{{(x - 2)(x + k)}}{{(x - 2)}}\]

Cancel out the same terms from numerator and denominator.

\[ \Rightarrow \dfrac{{\tan (x - 2)\{ (x - 2)(x + k)\} }}{{{{(x - 2)}^2}}} = \dfrac{{\tan (x - 2)}}{{(x - 2)}} \times (x + k)\]

Taking limit on both sides we get

\[ \Rightarrow \mathop {\lim }\limits_{x \to 2} \dfrac{{\tan (x - 2)\{ {x^2} + (k - 2)x - 2k\} }}{{{x^2} - 4x + 4}} = \mathop {\lim }\limits_{x \to 2} \dfrac{{\tan (x - 2)}}{{(x - 2)}} \times (x + k)\]

We know that we can separate the limits as \[\mathop {\lim }\limits_{x \to p} (xy) = \mathop {\lim }\limits_{x \to p} x \times \mathop {\lim }\limits_{x \to p} y\]

\[ \Rightarrow \mathop {\lim }\limits_{x \to 2} \dfrac{{\tan (x - 2)\{ {x^2} + (k - 2)x - 2k\} }}{{{x^2} - 4x + 4}} = \mathop {\lim }\limits_{x \to 2} \dfrac{{\tan (x - 2)}}{{(x - 2)}} \times \mathop {\lim }\limits_{x \to 2} (x + k)\] … (3)

Now we know \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x} = 1\]

So, we can apply this property to the first term because \[x \to 2 = x - 2 \to 0\] and as the function is the same as the limit we can apply the property.

\[ \Rightarrow \mathop {\lim }\limits_{x \to 2} \dfrac{{\tan (x - 2)}}{{(x - 2)}} = 1\]

Also, \[\mathop {\lim }\limits_{x \to 2} (x + k) = (k + 2)\]

Substituting the values in equation (3) we get

\[ \Rightarrow \mathop {\lim }\limits_{x \to 2} \dfrac{{\tan (x - 2)\{ {x^2} + (k - 2)x - 2k\} }}{{{x^2} - 4x + 4}} = 1 \times (k + 2) = k + 2\]

Now from the statement of the question we know the value of LHS is equal to 5.

\[

\Rightarrow k + 2 = 5 \\

\Rightarrow k = 5 - 2 \\

\Rightarrow k = 3 \\

\]

**So, the correct answer is “Option C”.**

**Note:**Students are likely to make mistakes while calculating the limit of the tan function and might substitute the value of x as 2 in the fraction which will give us the answer 0 which is wrong. Keep in mind for fractions like \[\dfrac{{\tan x}}{x}, \dfrac{{\sin x}}{x}\] we always use this way of finding the limit.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How do you graph the function fx 4x class 9 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Give 10 examples for herbs , shrubs , climbers , creepers

Why is there a time difference of about 5 hours between class 10 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is BLO What is the full form of BLO class 8 social science CBSE