
If $ \mathop a\limits^ \to = \hat i + 2\hat j + \hat k,\mathop b\limits^ \to = 2\hat i + \hat j $ and $ \mathop c\limits^ \to = 3\hat i - 4\hat j - 5\hat k $ then find a unit vector perpendicular to both of the vectors $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) $ and $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) $ .
Answer
591.3k+ views
Hint: In this question we have been given three vectors $ \mathop a\limits^ \to ,\mathop b\limits^ \to ,\mathop c\limits^ \to $ we need to find a unit vector which is perpendicular to $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) $ and $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) $ . For that we will find the value of the vector $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) $ and $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) $ as they are perpendicular we will find their cross product, and then we will use the formula: $ \left( {\dfrac{{\left( {\mathop a\limits^ \to - \mathop b\limits^ \to } \right) \times \left( {\mathop c\limits^ \to - \mathop b\limits^ \to } \right)}}{{\left| {\left( {\mathop a\limits^ \to - \mathop b\limits^ \to } \right) \times \left. {\left( {\mathop c\limits^ \to - \mathop b\limits^ \to } \right)} \right|} \right.}}} \right) $ to find the unit vector.
Complete step-by-step answer:
We have been provided with three vectors $ \mathop a\limits^ \to = \hat i + 2\hat j + \hat k,\mathop b\limits^ \to = 2\hat i + \hat j $ and $ \mathop c\limits^ \to = 3\hat i - 4\hat j - 5\hat k $ ,
To find a unit vector which is perpendicular to $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) $ and $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) $ , firstly we need to find $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) $
So, we can compute as $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) = \hat i + 2\hat j + \hat k - (2\hat i + \hat j) $
Simplifying, we will get $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) = - \hat i + \hat j + \hat k $
Similarly, we will find the value of $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) $ ,
So, we get $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) = 3\hat i - 4\hat j - 5\hat k - (2\hat i + \hat j) $
Simplifying, we have $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) = \hat i - 5\hat j - 5\hat k $
Now as we need to find the unit vector which is perpendicular to both $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) $ and $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) $ ,
For that we need to find their cross products,
So, we can write it as
$ (\mathop a\limits^ \to - \mathop b\limits^ \to ) \times (\mathop c\limits^ \to - \mathop b\limits^ \to ) = \left| {\left( {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
{ - 1}&1&1 \\
1&{ - 5}&{ - 5}
\end{array}} \right)} \right| $
Now we will solve the determinant: $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) \times (\mathop c\limits^ \to - \mathop b\limits^ \to ) = ( - 5 + 5)\hat i - (5 - 1)\hat j + (5 - 1)\hat k $
From this we will get $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) \times (\mathop c\limits^ \to - \mathop b\limits^ \to ) = - 4\hat j + 4\hat k $
Now, for finding the unit vector we will be using the formula: $ \left( {\dfrac{{\left( {\mathop a\limits^ \to - \mathop b\limits^ \to } \right) \times \left( {\mathop c\limits^ \to - \mathop b\limits^ \to } \right)}}{{\left| {\left( {\mathop a\limits^ \to - \mathop b\limits^ \to } \right) \times \left. {\left( {\mathop c\limits^ \to - \mathop b\limits^ \to } \right)} \right|} \right.}}} \right) $
Now, we will be keeping the values then it becomes: $ \dfrac{{ - 4\hat j + 4\hat k}}{{4\sqrt 2 }} = \dfrac{{ - \hat j + \hat k}}{{\sqrt 2 }} $
So, $ \dfrac{{ - \hat j + \hat k}}{{\sqrt 2 }} $ is the required vector.
Note: In this question, be careful while calculating the determinant, about the negative and positive signs. As we need to find a unit vector which is perpendicular to $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) $ and $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) $ , we should calculate the cross product and not the dot product.
Complete step-by-step answer:
We have been provided with three vectors $ \mathop a\limits^ \to = \hat i + 2\hat j + \hat k,\mathop b\limits^ \to = 2\hat i + \hat j $ and $ \mathop c\limits^ \to = 3\hat i - 4\hat j - 5\hat k $ ,
To find a unit vector which is perpendicular to $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) $ and $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) $ , firstly we need to find $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) $
So, we can compute as $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) = \hat i + 2\hat j + \hat k - (2\hat i + \hat j) $
Simplifying, we will get $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) = - \hat i + \hat j + \hat k $
Similarly, we will find the value of $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) $ ,
So, we get $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) = 3\hat i - 4\hat j - 5\hat k - (2\hat i + \hat j) $
Simplifying, we have $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) = \hat i - 5\hat j - 5\hat k $
Now as we need to find the unit vector which is perpendicular to both $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) $ and $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) $ ,
For that we need to find their cross products,
So, we can write it as
$ (\mathop a\limits^ \to - \mathop b\limits^ \to ) \times (\mathop c\limits^ \to - \mathop b\limits^ \to ) = \left| {\left( {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
{ - 1}&1&1 \\
1&{ - 5}&{ - 5}
\end{array}} \right)} \right| $
Now we will solve the determinant: $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) \times (\mathop c\limits^ \to - \mathop b\limits^ \to ) = ( - 5 + 5)\hat i - (5 - 1)\hat j + (5 - 1)\hat k $
From this we will get $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) \times (\mathop c\limits^ \to - \mathop b\limits^ \to ) = - 4\hat j + 4\hat k $
Now, for finding the unit vector we will be using the formula: $ \left( {\dfrac{{\left( {\mathop a\limits^ \to - \mathop b\limits^ \to } \right) \times \left( {\mathop c\limits^ \to - \mathop b\limits^ \to } \right)}}{{\left| {\left( {\mathop a\limits^ \to - \mathop b\limits^ \to } \right) \times \left. {\left( {\mathop c\limits^ \to - \mathop b\limits^ \to } \right)} \right|} \right.}}} \right) $
Now, we will be keeping the values then it becomes: $ \dfrac{{ - 4\hat j + 4\hat k}}{{4\sqrt 2 }} = \dfrac{{ - \hat j + \hat k}}{{\sqrt 2 }} $
So, $ \dfrac{{ - \hat j + \hat k}}{{\sqrt 2 }} $ is the required vector.
Note: In this question, be careful while calculating the determinant, about the negative and positive signs. As we need to find a unit vector which is perpendicular to $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) $ and $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) $ , we should calculate the cross product and not the dot product.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

