
If $ \mathop a\limits^ \to = \hat i + 2\hat j + \hat k,\mathop b\limits^ \to = 2\hat i + \hat j $ and $ \mathop c\limits^ \to = 3\hat i - 4\hat j - 5\hat k $ then find a unit vector perpendicular to both of the vectors $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) $ and $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) $ .
Answer
579.9k+ views
Hint: In this question we have been given three vectors $ \mathop a\limits^ \to ,\mathop b\limits^ \to ,\mathop c\limits^ \to $ we need to find a unit vector which is perpendicular to $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) $ and $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) $ . For that we will find the value of the vector $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) $ and $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) $ as they are perpendicular we will find their cross product, and then we will use the formula: $ \left( {\dfrac{{\left( {\mathop a\limits^ \to - \mathop b\limits^ \to } \right) \times \left( {\mathop c\limits^ \to - \mathop b\limits^ \to } \right)}}{{\left| {\left( {\mathop a\limits^ \to - \mathop b\limits^ \to } \right) \times \left. {\left( {\mathop c\limits^ \to - \mathop b\limits^ \to } \right)} \right|} \right.}}} \right) $ to find the unit vector.
Complete step-by-step answer:
We have been provided with three vectors $ \mathop a\limits^ \to = \hat i + 2\hat j + \hat k,\mathop b\limits^ \to = 2\hat i + \hat j $ and $ \mathop c\limits^ \to = 3\hat i - 4\hat j - 5\hat k $ ,
To find a unit vector which is perpendicular to $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) $ and $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) $ , firstly we need to find $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) $
So, we can compute as $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) = \hat i + 2\hat j + \hat k - (2\hat i + \hat j) $
Simplifying, we will get $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) = - \hat i + \hat j + \hat k $
Similarly, we will find the value of $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) $ ,
So, we get $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) = 3\hat i - 4\hat j - 5\hat k - (2\hat i + \hat j) $
Simplifying, we have $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) = \hat i - 5\hat j - 5\hat k $
Now as we need to find the unit vector which is perpendicular to both $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) $ and $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) $ ,
For that we need to find their cross products,
So, we can write it as
$ (\mathop a\limits^ \to - \mathop b\limits^ \to ) \times (\mathop c\limits^ \to - \mathop b\limits^ \to ) = \left| {\left( {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
{ - 1}&1&1 \\
1&{ - 5}&{ - 5}
\end{array}} \right)} \right| $
Now we will solve the determinant: $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) \times (\mathop c\limits^ \to - \mathop b\limits^ \to ) = ( - 5 + 5)\hat i - (5 - 1)\hat j + (5 - 1)\hat k $
From this we will get $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) \times (\mathop c\limits^ \to - \mathop b\limits^ \to ) = - 4\hat j + 4\hat k $
Now, for finding the unit vector we will be using the formula: $ \left( {\dfrac{{\left( {\mathop a\limits^ \to - \mathop b\limits^ \to } \right) \times \left( {\mathop c\limits^ \to - \mathop b\limits^ \to } \right)}}{{\left| {\left( {\mathop a\limits^ \to - \mathop b\limits^ \to } \right) \times \left. {\left( {\mathop c\limits^ \to - \mathop b\limits^ \to } \right)} \right|} \right.}}} \right) $
Now, we will be keeping the values then it becomes: $ \dfrac{{ - 4\hat j + 4\hat k}}{{4\sqrt 2 }} = \dfrac{{ - \hat j + \hat k}}{{\sqrt 2 }} $
So, $ \dfrac{{ - \hat j + \hat k}}{{\sqrt 2 }} $ is the required vector.
Note: In this question, be careful while calculating the determinant, about the negative and positive signs. As we need to find a unit vector which is perpendicular to $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) $ and $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) $ , we should calculate the cross product and not the dot product.
Complete step-by-step answer:
We have been provided with three vectors $ \mathop a\limits^ \to = \hat i + 2\hat j + \hat k,\mathop b\limits^ \to = 2\hat i + \hat j $ and $ \mathop c\limits^ \to = 3\hat i - 4\hat j - 5\hat k $ ,
To find a unit vector which is perpendicular to $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) $ and $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) $ , firstly we need to find $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) $
So, we can compute as $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) = \hat i + 2\hat j + \hat k - (2\hat i + \hat j) $
Simplifying, we will get $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) = - \hat i + \hat j + \hat k $
Similarly, we will find the value of $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) $ ,
So, we get $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) = 3\hat i - 4\hat j - 5\hat k - (2\hat i + \hat j) $
Simplifying, we have $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) = \hat i - 5\hat j - 5\hat k $
Now as we need to find the unit vector which is perpendicular to both $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) $ and $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) $ ,
For that we need to find their cross products,
So, we can write it as
$ (\mathop a\limits^ \to - \mathop b\limits^ \to ) \times (\mathop c\limits^ \to - \mathop b\limits^ \to ) = \left| {\left( {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
{ - 1}&1&1 \\
1&{ - 5}&{ - 5}
\end{array}} \right)} \right| $
Now we will solve the determinant: $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) \times (\mathop c\limits^ \to - \mathop b\limits^ \to ) = ( - 5 + 5)\hat i - (5 - 1)\hat j + (5 - 1)\hat k $
From this we will get $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) \times (\mathop c\limits^ \to - \mathop b\limits^ \to ) = - 4\hat j + 4\hat k $
Now, for finding the unit vector we will be using the formula: $ \left( {\dfrac{{\left( {\mathop a\limits^ \to - \mathop b\limits^ \to } \right) \times \left( {\mathop c\limits^ \to - \mathop b\limits^ \to } \right)}}{{\left| {\left( {\mathop a\limits^ \to - \mathop b\limits^ \to } \right) \times \left. {\left( {\mathop c\limits^ \to - \mathop b\limits^ \to } \right)} \right|} \right.}}} \right) $
Now, we will be keeping the values then it becomes: $ \dfrac{{ - 4\hat j + 4\hat k}}{{4\sqrt 2 }} = \dfrac{{ - \hat j + \hat k}}{{\sqrt 2 }} $
So, $ \dfrac{{ - \hat j + \hat k}}{{\sqrt 2 }} $ is the required vector.
Note: In this question, be careful while calculating the determinant, about the negative and positive signs. As we need to find a unit vector which is perpendicular to $ (\mathop a\limits^ \to - \mathop b\limits^ \to ) $ and $ (\mathop c\limits^ \to - \mathop b\limits^ \to ) $ , we should calculate the cross product and not the dot product.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

