Answer

Verified

385.8k+ views

**Hint:**We use the Fermat’s little theorem which states that ${{a}^{p-1}}\equiv 1\left( \bmod p \right)$ where $p$ is a prime and $a$ is an integer such that $p$ does not divide $a$ to prove ${{a}^{m-1}}-1,{{b}^{m-1}}-1$ are multiples of $m$. We also use the algebraic identity for some positive integer $n$ as ${{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {{a}^{n-1}}+{{a}^{n-2}}b+{{a}^{n-3}}{{b}^{2}}+...+{{b}^{n-1}} \right)$\[\]

**Complete step-by-step solution:**

We know from Fermat’s theorem of modular arithmetic that if $p$ is a prime number and $a$ is any integer such that $a$ is not a multiple of $p$ then ${{a}^{p}}-a$ is multiple of $p$. Mathematically we have;

\[\begin{align}

& p|{{a}^{p}}-a \\

& \Rightarrow {{a}^{p}}\equiv a\left( \bmod p \right) \\

& \Rightarrow {{a}^{p-1}}\equiv 1\left( \bmod p \right) \\

& \Rightarrow p|{{a}^{p-1}}-1 \\

\end{align}\]

We are given the question that $m$ is a prime number and $a,b$ two numbers less than$m$. Since $a,b$ are less than $m$ they cannot be a multiple of $m$. So b y Fermat’s little thermo we can state that ${{a}^{m-1}}-1$ and ${{b}^{m-1}}-1$ are multiple of $m$ that is

\[m|{{a}^{m-1}}-1,m|{{b}^{m-1}}-1\]

We know that if a number divides two numbers then the number also divides their sum or difference. So we have

\[\begin{align}

& \Rightarrow m|{{a}^{m-1}}-1-\left( {{b}^{m-1}}-1 \right) \\

& \Rightarrow m|{{a}^{m-1}}-{{b}^{m-1}} \\

\end{align}\]

We use the factorization identity ${{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {{a}^{n-1}}+{{a}^{n-2}}b+{{a}^{n-3}}{{b}^{2}}+...+{{b}^{n-1}} \right)$ for $n=m-1$ in the above step to have;

\[\Rightarrow m|\left( a-b \right)\left( {{a}^{m-2}}+{{a}^{m-3}}{{b}^{2}}+{{a}^{m-4}}{{b}^{3}}+...+{{b}^{m-2}} \right)\]

We in the above step $m$ either exactly divide $a-b$ or $m$ exactly divide ${{a}^{m-2}}+{{a}^{m-3}}{{b}^{2}}+{{a}^{m-4}}{{b}^{3}}+...+{{b}^{m-2}}$ or divide both. We are given that $a,b < m$ , so $m$ cannot exactly divide $a-b$. So it can only exactly divide ${{a}^{m-2}}+{{a}^{m-3}}{{b}^{2}}+{{a}^{m-4}}{{b}^{3}}+...+{{b}^{m-2}}$. Hence it is proved that ${{a}^{m-2}}+{{a}^{m-3}}{{b}^{2}}+{{a}^{m-4}}{{b}^{3}}+...+{{b}^{m-2}}$ is a multiple of $m$. \[\]

**Note:**We note that if a divisor $d$ divides a number $n$ with remainder zero we call the division exact division, the divisor $d$ a factor of $n$ and the dividend $n$ a multiple of $d$. We know from law modular arithmetic that if $a\equiv b\left( \bmod n \right)\Leftrightarrow ak\equiv bk\left( \bmod n \right)$ for non-zero integers $k$. The converse of Fermat’s little theorem is used for primality of number if there exist integer $a,p$ such that ${{a}^{p}}\equiv p\left( \bmod n \right)$ for all primes $q$ dividing exactly $p-1$ and $p$ cannot divide $ {{a}^{\dfrac{p-1}{q}}}-1$ then $p$ is a prime.

Recently Updated Pages

What number is 20 of 400 class 8 maths CBSE

Which one of the following numbers is completely divisible class 8 maths CBSE

What number is 78 of 50 A 32 B 35 C 36 D 39 E 41 class 8 maths CBSE

How many integers are there between 10 and 2 and how class 8 maths CBSE

The 3 is what percent of 12 class 8 maths CBSE

Find the circumference of the circle having radius class 8 maths CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

List some examples of Rabi and Kharif crops class 8 biology CBSE

Which are the Top 10 Largest Countries of the World?

The provincial president of the constituent assembly class 11 social science CBSE

Write the 6 fundamental rights of India and explain in detail