If m and M are the minimum and the maximum values of $4 + \dfrac{1}{2}{\sin ^2}2x - 2{\cos ^4}x$, $x \in R$, then M-m is equal to:
$
(a){\text{ }}\dfrac{9}{4} \\
(b){\text{ }}\dfrac{{15}}{4} \\
(c){\text{ }}\dfrac{7}{4} \\
(d){\text{ }}\dfrac{1}{4} \\
$
Last updated date: 27th Mar 2023
•
Total views: 306.3k
•
Views today: 8.82k
Answer
306.3k+ views
Hint – In this problem we have to find the subtraction of minimum and the maximum value of the given expression, first try and convert the given equation into perfect square form all into a single trigonometric ratio either cos or sin using various trigonometric identities and algebraic identities. Then use the range of that remaining single trigonometric ratio to get the answer.
Complete step-by-step answer:
Given equation is
$4 + \dfrac{1}{2}{\sin ^2}2x - 2{\cos ^4}x$
Now as we know $\sin 2x = 2\sin x\cos x,\;{\sin ^2}x = \left( {1 - {{\cos }^2}x} \right)$
So, substitute this value in above equation we have,
$
\Rightarrow 4 + \dfrac{1}{2}{\left( {2\sin x\cos x} \right)^2} - 2{\cos ^4}x \\
\Rightarrow 4 + \dfrac{4}{2}{\sin ^2}x{\cos ^2}x - 2{\cos ^4}x \\
\Rightarrow 4 + 2\left( {1 - {{\cos }^2}x} \right){\cos ^2}x - 2{\cos ^4}x \\
$
Now simplify the above equation we have,
$ \Rightarrow 4 + 2{\cos ^2}x - 4{\cos ^4}x$
Now take (-4) common we have,
$ \Rightarrow - 4\left( { - 1 - \dfrac{1}{2}{{\cos }^2}x + {{\cos }^4}x} \right)$
Now in bracket add and subtract by $\dfrac{1}{{16}}$ we have,
$ \Rightarrow - 4\left( { - 1 - \dfrac{1}{2}{{\cos }^2}x + {{\cos }^4}x + \dfrac{1}{{16}} - \dfrac{1}{{16}}} \right)$
Now make a complete square we have,
$ \Rightarrow - 4\left[ {{{\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)}^2} - \dfrac{{17}}{{16}}} \right]$
Now as we know $0 \leqslant {\cos ^2}x \leqslant 1$
Now subtract by $\dfrac{1}{4}$ in above equation we have,
$\dfrac{{ - 1}}{4} \leqslant {\cos ^2}x - \dfrac{1}{4} \leqslant 1 - \dfrac{1}{4}$
$\dfrac{{ - 1}}{4} \leqslant {\cos ^2}x - \dfrac{1}{4} \leqslant \dfrac{3}{4}$
Now squaring on both sides we have, when we square the extreme L.H.S becomes zero
$0 \leqslant {\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)^2} \leqslant {\left( {\dfrac{3}{4}} \right)^2}$
$0 \leqslant {\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)^2} \leqslant \dfrac{9}{{16}}$
Now subtract by $\dfrac{{ - 17}}{{16}}$ in the above equation we have,
$ - \dfrac{{17}}{{16}} \leqslant {\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)^2} - \dfrac{{17}}{{16}} \leqslant \dfrac{9}{{16}} - \dfrac{{17}}{{16}}$
Now simplify the above equation we have,
$ - \dfrac{{17}}{{16}} \leqslant {\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)^2} - \dfrac{{17}}{{16}} \leqslant \dfrac{{ - 1}}{2}$
Now multiply by (-4) throughout we have, (when we multiply by negative value the inequality sign changes).
\[ - 4\left( { - \dfrac{{17}}{{16}}} \right) \geqslant - 4\left[ {{{\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)}^2} - \dfrac{{17}}{{16}}} \right] \geqslant - 4\left( {\dfrac{{ - 1}}{2}} \right)\]
Now simplify the above equation we have,
\[\left( {\dfrac{{17}}{4}} \right) \geqslant - 4\left[ {{{\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)}^2} - \dfrac{{17}}{{16}}} \right] \geqslant 2\]
So, from the above equation it is clear that the minimum value (m) =2, and the maximum value (M) = $\dfrac{{17}}{4}$ of the given equation.
So the value of (M-m) is
$ \Rightarrow \left( {M - m} \right) = \dfrac{{17}}{4} - 2 = \dfrac{9}{4}$.
Hence option (a) is correct.
Note – Whenever we face such type of problems there can be two ways first one is being explained above however the another method is a bit lengthy and it involves the concept of maxima and minima by single differentiating first to get the values at which max or minima can occur and then double differentiating to be sure that whether it’s a max or min. Both of these concepts will help you get on the right track to reach the answer.
Complete step-by-step answer:
Given equation is
$4 + \dfrac{1}{2}{\sin ^2}2x - 2{\cos ^4}x$
Now as we know $\sin 2x = 2\sin x\cos x,\;{\sin ^2}x = \left( {1 - {{\cos }^2}x} \right)$
So, substitute this value in above equation we have,
$
\Rightarrow 4 + \dfrac{1}{2}{\left( {2\sin x\cos x} \right)^2} - 2{\cos ^4}x \\
\Rightarrow 4 + \dfrac{4}{2}{\sin ^2}x{\cos ^2}x - 2{\cos ^4}x \\
\Rightarrow 4 + 2\left( {1 - {{\cos }^2}x} \right){\cos ^2}x - 2{\cos ^4}x \\
$
Now simplify the above equation we have,
$ \Rightarrow 4 + 2{\cos ^2}x - 4{\cos ^4}x$
Now take (-4) common we have,
$ \Rightarrow - 4\left( { - 1 - \dfrac{1}{2}{{\cos }^2}x + {{\cos }^4}x} \right)$
Now in bracket add and subtract by $\dfrac{1}{{16}}$ we have,
$ \Rightarrow - 4\left( { - 1 - \dfrac{1}{2}{{\cos }^2}x + {{\cos }^4}x + \dfrac{1}{{16}} - \dfrac{1}{{16}}} \right)$
Now make a complete square we have,
$ \Rightarrow - 4\left[ {{{\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)}^2} - \dfrac{{17}}{{16}}} \right]$
Now as we know $0 \leqslant {\cos ^2}x \leqslant 1$
Now subtract by $\dfrac{1}{4}$ in above equation we have,
$\dfrac{{ - 1}}{4} \leqslant {\cos ^2}x - \dfrac{1}{4} \leqslant 1 - \dfrac{1}{4}$
$\dfrac{{ - 1}}{4} \leqslant {\cos ^2}x - \dfrac{1}{4} \leqslant \dfrac{3}{4}$
Now squaring on both sides we have, when we square the extreme L.H.S becomes zero
$0 \leqslant {\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)^2} \leqslant {\left( {\dfrac{3}{4}} \right)^2}$
$0 \leqslant {\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)^2} \leqslant \dfrac{9}{{16}}$
Now subtract by $\dfrac{{ - 17}}{{16}}$ in the above equation we have,
$ - \dfrac{{17}}{{16}} \leqslant {\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)^2} - \dfrac{{17}}{{16}} \leqslant \dfrac{9}{{16}} - \dfrac{{17}}{{16}}$
Now simplify the above equation we have,
$ - \dfrac{{17}}{{16}} \leqslant {\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)^2} - \dfrac{{17}}{{16}} \leqslant \dfrac{{ - 1}}{2}$
Now multiply by (-4) throughout we have, (when we multiply by negative value the inequality sign changes).
\[ - 4\left( { - \dfrac{{17}}{{16}}} \right) \geqslant - 4\left[ {{{\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)}^2} - \dfrac{{17}}{{16}}} \right] \geqslant - 4\left( {\dfrac{{ - 1}}{2}} \right)\]
Now simplify the above equation we have,
\[\left( {\dfrac{{17}}{4}} \right) \geqslant - 4\left[ {{{\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)}^2} - \dfrac{{17}}{{16}}} \right] \geqslant 2\]
So, from the above equation it is clear that the minimum value (m) =2, and the maximum value (M) = $\dfrac{{17}}{4}$ of the given equation.
So the value of (M-m) is
$ \Rightarrow \left( {M - m} \right) = \dfrac{{17}}{4} - 2 = \dfrac{9}{4}$.
Hence option (a) is correct.
Note – Whenever we face such type of problems there can be two ways first one is being explained above however the another method is a bit lengthy and it involves the concept of maxima and minima by single differentiating first to get the values at which max or minima can occur and then double differentiating to be sure that whether it’s a max or min. Both of these concepts will help you get on the right track to reach the answer.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
