
If length, breadth and height of a cuboid are 20cm, 15cm and 10cm respectively, then find :
(a) Area of the base.
(b) Surface area of its vertical faces.
(c) Volume.
Answer
611.1k+ views
Hint:In order to solve this problem, we must use formulas of surface area and volume of Cuboid along with proper understanding of length, breadth and height of cuboid to get the required result.
Complete step-by-step answer:
In the question it is given the length(l) = 20cm, breadth(b) =15cm, height(h)=10cm of cuboid.
(A) Area of base ABCD = length(l) × breadth(b)
So on putting the values of length(l) & breadth(b)
=20×15
=300${\text{c}}{{\text{m}}^2}$.
(B) Surface area of its vertical faces
Here it is total 4 vertical surfaces, ABEF, BEHC, HCDG, AFGD
By observing the given figure, we can say that Surface area of its vertical faces ABEF, HCDG will be equal and will be the length(l) × height(h)
So Surface area of its vertical faces ABEF, HCDG = 2 (length(l) × height(h))
Similarly, by observing the given figure, we can say that Surface area of its vertical faces BEHC, AFGD will be equal and will be the breadth(b) × height(h)
So Surface area of its vertical faces BEHC, AFGD = 2 (breadth(b) × height(h))
So Total Surface area of its vertical faces =
2 (length(l) × height(h)) + 2 (breadth(b) × height(h))
=2(lh+bh)
So on putting all the values
= 2(20×10+15×10)
=2×350
=700 ${\text{c}}{{\text{m}}^2}$.
(C) we know that the Volume of cuboid is equal to length(l) × breadth(b) × height(h)
So on putting all the value
=20×15×10
=300×10
=3000 ${\text{c}}{{\text{m}}^3}$.
Note: Whenever we face such types of problems the key concept we have to remember is that always remember the formula of Surface area and volume of Cuboid which are stated above, then using those formulas calculate, whatever is asked in question.
Complete step-by-step answer:
In the question it is given the length(l) = 20cm, breadth(b) =15cm, height(h)=10cm of cuboid.
(A) Area of base ABCD = length(l) × breadth(b)
So on putting the values of length(l) & breadth(b)
=20×15
=300${\text{c}}{{\text{m}}^2}$.
(B) Surface area of its vertical faces
Here it is total 4 vertical surfaces, ABEF, BEHC, HCDG, AFGD
By observing the given figure, we can say that Surface area of its vertical faces ABEF, HCDG will be equal and will be the length(l) × height(h)
So Surface area of its vertical faces ABEF, HCDG = 2 (length(l) × height(h))
Similarly, by observing the given figure, we can say that Surface area of its vertical faces BEHC, AFGD will be equal and will be the breadth(b) × height(h)
So Surface area of its vertical faces BEHC, AFGD = 2 (breadth(b) × height(h))
So Total Surface area of its vertical faces =
2 (length(l) × height(h)) + 2 (breadth(b) × height(h))
=2(lh+bh)
So on putting all the values
= 2(20×10+15×10)
=2×350
=700 ${\text{c}}{{\text{m}}^2}$.
(C) we know that the Volume of cuboid is equal to length(l) × breadth(b) × height(h)
So on putting all the value
=20×15×10
=300×10
=3000 ${\text{c}}{{\text{m}}^3}$.
Note: Whenever we face such types of problems the key concept we have to remember is that always remember the formula of Surface area and volume of Cuboid which are stated above, then using those formulas calculate, whatever is asked in question.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

