
If ${\left( {{x^2} + {y^2}} \right)^2} = xy$, find $\dfrac{{dy}}{{dx}}$.
Answer
508.5k+ views
Hint: Chain rule and product rule are two really useful rules for differentiating functions. We use the chain rule when differentiating a ‘function of a function’, like${\left( {{x^2} + {y^2}} \right)^2}$, whereas product rule is used when differentiating two functions multiplied together, like $xy$.
Complete step-by-step answer:
On differentiating both sides with respect to $x$, we get
$ \Rightarrow 2\left( {{x^2} + {y^2}} \right)\dfrac{d}{{dx}}\left( {{x^2} + {y^2}} \right) = x\dfrac{{dy}}{{dx}} + y$
$ \Rightarrow \left( {2{x^2} + 2{y^2}} \right)\left( {2x + 2y\dfrac{{dy}}{{dx}}} \right) = x\dfrac{{dy}}{{dx}} + y$
$ \Rightarrow 4{x^3} + 4{x^2}y\dfrac{{dy}}{{dx}} + 4x{y^2} + 4{y^3}\dfrac{{dy}}{{dx}} = x\dfrac{{dy}}{{dx}} + y$
$ \Rightarrow 4{x^3} + 4{x^2}y\dfrac{{dy}}{{dx}} + 4x{y^2} + 4{y^3}\dfrac{{dy}}{{dx}} - x\dfrac{{dy}}{{dx}} - y = 0$
$ \Rightarrow \dfrac{{dy}}{{dx}}\left[ {4{x^2}y + 4{y^3} - x} \right] = y - 4{x^3} - 4x{y^2}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{y - 4{x^3} - 4x{y^2}}}{{4{x^2}y + 4{y^3} - x}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{y - 4x\left( {{x^2} + {y^2}} \right)}}{{4y\left( {{x^2} + {y^2}} \right) - x}}$
Note: The product rule states that differentiate a different function in the product each time and add the two terms together, i.e., $\dfrac{d}{{dx}}\left[ {f\left( x \right) \cdot g\left( x \right)} \right] = f\left( x \right) \cdot g'\left( x \right) + g\left( x \right) \cdot f'\left( x \right)$.
Complete step-by-step answer:
On differentiating both sides with respect to $x$, we get
$ \Rightarrow 2\left( {{x^2} + {y^2}} \right)\dfrac{d}{{dx}}\left( {{x^2} + {y^2}} \right) = x\dfrac{{dy}}{{dx}} + y$
$ \Rightarrow \left( {2{x^2} + 2{y^2}} \right)\left( {2x + 2y\dfrac{{dy}}{{dx}}} \right) = x\dfrac{{dy}}{{dx}} + y$
$ \Rightarrow 4{x^3} + 4{x^2}y\dfrac{{dy}}{{dx}} + 4x{y^2} + 4{y^3}\dfrac{{dy}}{{dx}} = x\dfrac{{dy}}{{dx}} + y$
$ \Rightarrow 4{x^3} + 4{x^2}y\dfrac{{dy}}{{dx}} + 4x{y^2} + 4{y^3}\dfrac{{dy}}{{dx}} - x\dfrac{{dy}}{{dx}} - y = 0$
$ \Rightarrow \dfrac{{dy}}{{dx}}\left[ {4{x^2}y + 4{y^3} - x} \right] = y - 4{x^3} - 4x{y^2}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{y - 4{x^3} - 4x{y^2}}}{{4{x^2}y + 4{y^3} - x}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{y - 4x\left( {{x^2} + {y^2}} \right)}}{{4y\left( {{x^2} + {y^2}} \right) - x}}$
Note: The product rule states that differentiate a different function in the product each time and add the two terms together, i.e., $\dfrac{d}{{dx}}\left[ {f\left( x \right) \cdot g\left( x \right)} \right] = f\left( x \right) \cdot g'\left( x \right) + g\left( x \right) \cdot f'\left( x \right)$.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
