
If \[{\left( {2 + \dfrac{x}{3}} \right)^{55}}\]is expanded in the ascending powers of x in two consecutive terms of the expansion are equal then these terms are:
A. \[{7^{th}}\]and \[{8^{th}}\]
B. \[{8^{th}}\]and \[{9^{th}}\]
C. \[{28^{th}}\]and \[{29^{th}}\]
D. \[{27^{th}}\]and \[{28^{th}}\]
Answer
583.5k+ views
Hint: We use the method of binomial expansion to expand the term in the bracket in ascending order of x. Then using the method to write a term of binomial expansion we write two consecutive terms and equate their coefficients.
* A binomial expansion helps us to expand expressions of the form \[{(a + b)^n}\] through the formula \[{(a + b)^n} = \sum\limits_{r = 0}^n {^n{C_r}{{(a)}^{n - r}}{{(b)}^r}} \]
Complete step-by-step answer:
We can expand \[{\left( {2 + \dfrac{x}{3}} \right)^{55}}\]using binomial expansion where \[a = 2,b = \dfrac{x}{3},n = 55\].
Now we take two consecutive terms \[{P_{r + 1}},{P_{r + 2}}\]
We can write \[{(r + 1)^{th}}\]term as \[{P_{r + 1}}{ = ^{55}}{C_r}{(2)^{55 - r}}{(\dfrac{x}{3})^r}\]
Similarly we can write \[{(r + 2)^{th}}\]term as \[{P_{r + 2}}{ = ^{55}}{C_{r + 1}}{(2)^{55 - r - 1}}{(\dfrac{x}{3})^{r + 1}}\]
i.e. \[{P_{r + 2}}{ = ^{55}}{C_{r + 1}}{(2)^{54 - r}}{(\dfrac{x}{3})^{r + 1}}\]
We solve the coefficient by using the formula for combination \[^n{C_r} = \dfrac{{n!}}{{(n - r)!(r)!}}\]
Coefficient of \[{P_{r + 1}}\]term is \[^{55}{C_r}{(2)^{55 - r}}{(\dfrac{1}{3})^r}\]
\[{ \Rightarrow ^{55}}{C_r}{(2)^{55 - r}}{(\dfrac{1}{3})^r} = \dfrac{{55!}}{{(55 - r)!(r)!}}{(2)^{55 - r}}{(\dfrac{1}{3})^r}\] … (1)
Coefficient of \[{P_{r + 2}}\]term is \[^{55}{C_{r + 1}}{(2)^{54 - r}}{(\dfrac{1}{3})^{r + 1}}\]
\[{ \Rightarrow ^{55}}{C_{r + 1}}{(2)^{54 - r}}{(\dfrac{1}{3})^{r + 1}} = \dfrac{{55!}}{{(55 - (r + 1))!(r + 1)!}}{(2)^{54 - r}}{(\dfrac{1}{3})^{r + 1}}\]
\[{ \Rightarrow ^{55}}{C_{r + 1}}{(2)^{54 - r}}{(\dfrac{1}{3})^{r + 1}} = \dfrac{{55!}}{{(54 - r)!(r + 1)!}}{(2)^{54 - r}}{(\dfrac{1}{3})^{r + 1}}\] … (2)
Now we know the coefficients of the consecutive terms are equal. So we equate the coefficients of terms \[{P_{r + 1}},{P_{r + 2}}\].
\[{ \Rightarrow ^{55}}{C_r}{(2)^{55 - r}}{(\dfrac{1}{3})^r}{ = ^{55}}{C_{r + 1}}{(2)^{54 - r}}{(\dfrac{1}{3})^{r + 1}}\]
Substitute the values from equation (1) and (2)
\[ \Rightarrow \dfrac{{55!}}{{(55 - r)!(r)!}}{(2)^{55 - r}}{(\dfrac{1}{3})^r} = \dfrac{{55!}}{{(54 - r)!(r + 1)!}}{(2)^{54 - r}}{(\dfrac{1}{3})^{r + 1}}\] … (3)
Now using \[(n + 1)! = (n + 1)(n)!\] we expand the terms of factorial on both sides and write \[(55 - r)! = (55 - r)(55 - r - 1)! = (55 - r)(54 - r)!\]
\[(r + 1)! = (r + 1)(r)!\]
And using the rule of exponents \[{a^{m + n}} = {a^m}{a^n}\] we write
\[{(2)^{55 - r}} = {(2)^{1 + 54 - r}} = (2){(2)^{54 - r}}\]
\[{(\dfrac{1}{3})^{r + 1}} = {(\dfrac{1}{3})^r}(\dfrac{1}{3})\]
Substituting the values in equation (3)
\[
\Rightarrow \dfrac{{55!}}{{(55 - r)(55 - r - 1)!(r)!}}{(2)^{1 + 54 - r}}{(\dfrac{1}{3})^r} = \dfrac{{55!}}{{(54 - r)!(r + 1)(r)!}}{(2)^{54 - r}}{(\dfrac{1}{3})^r}(\dfrac{1}{3}) \\
\Rightarrow \dfrac{{55!}}{{(55 - r)(54 - r)!(r)!}}(2){(2)^{54 - r}}{(\dfrac{1}{3})^r} = \dfrac{{55!}}{{(54 - r)!(r + 1)(r)!}}{(2)^{54 - r}}{(\dfrac{1}{3})^r}(\dfrac{1}{3}) \\
\]
Cancel out same terms from both sides of the equations
\[ \Rightarrow \dfrac{1}{{(55 - r)}}(2) = \dfrac{1}{{(r + 1)}}(\dfrac{1}{3})\]
Cross multiply the terms on both sides
\[
\Rightarrow 3 \times 2 \times (r + 1) = 55 - r \\
\Rightarrow 6(r + 1) = 55 - r \\
\Rightarrow 6r + 6 = 55 - r \\
\]
Shift the terms with variable on one side and constants on other side of the equation
\[
\Rightarrow 6r + r = 55 - 6 \\
\Rightarrow 7r = 49 \\
\]
Divide both sides by 7
\[ \Rightarrow \dfrac{{7r}}{7} = \dfrac{{49}}{7}\]
Cancel out terms from numerator and denominator
\[ \Rightarrow r = 7\]
Substituting the value of r in \[{P_{r + 1}},{P_{r + 2}}\] we get the two consecutive terms as \[{P_8},{P_9}\]
Therefore, \[{8^{th}}\] and \[{9^{th}}\] terms are having equal coefficients
So, option B is correct.
Note: Students are likely to make mistake while writing the factorial into simpler form as they tend to make mistake of writing \[(55 - r)! = (55 - r)(55 - (r - 1))! = (55 - r)(56 - r)!\] which is wrong, we have to subtract 1 from whole term inside the bracket.
* A binomial expansion helps us to expand expressions of the form \[{(a + b)^n}\] through the formula \[{(a + b)^n} = \sum\limits_{r = 0}^n {^n{C_r}{{(a)}^{n - r}}{{(b)}^r}} \]
Complete step-by-step answer:
We can expand \[{\left( {2 + \dfrac{x}{3}} \right)^{55}}\]using binomial expansion where \[a = 2,b = \dfrac{x}{3},n = 55\].
Now we take two consecutive terms \[{P_{r + 1}},{P_{r + 2}}\]
We can write \[{(r + 1)^{th}}\]term as \[{P_{r + 1}}{ = ^{55}}{C_r}{(2)^{55 - r}}{(\dfrac{x}{3})^r}\]
Similarly we can write \[{(r + 2)^{th}}\]term as \[{P_{r + 2}}{ = ^{55}}{C_{r + 1}}{(2)^{55 - r - 1}}{(\dfrac{x}{3})^{r + 1}}\]
i.e. \[{P_{r + 2}}{ = ^{55}}{C_{r + 1}}{(2)^{54 - r}}{(\dfrac{x}{3})^{r + 1}}\]
We solve the coefficient by using the formula for combination \[^n{C_r} = \dfrac{{n!}}{{(n - r)!(r)!}}\]
Coefficient of \[{P_{r + 1}}\]term is \[^{55}{C_r}{(2)^{55 - r}}{(\dfrac{1}{3})^r}\]
\[{ \Rightarrow ^{55}}{C_r}{(2)^{55 - r}}{(\dfrac{1}{3})^r} = \dfrac{{55!}}{{(55 - r)!(r)!}}{(2)^{55 - r}}{(\dfrac{1}{3})^r}\] … (1)
Coefficient of \[{P_{r + 2}}\]term is \[^{55}{C_{r + 1}}{(2)^{54 - r}}{(\dfrac{1}{3})^{r + 1}}\]
\[{ \Rightarrow ^{55}}{C_{r + 1}}{(2)^{54 - r}}{(\dfrac{1}{3})^{r + 1}} = \dfrac{{55!}}{{(55 - (r + 1))!(r + 1)!}}{(2)^{54 - r}}{(\dfrac{1}{3})^{r + 1}}\]
\[{ \Rightarrow ^{55}}{C_{r + 1}}{(2)^{54 - r}}{(\dfrac{1}{3})^{r + 1}} = \dfrac{{55!}}{{(54 - r)!(r + 1)!}}{(2)^{54 - r}}{(\dfrac{1}{3})^{r + 1}}\] … (2)
Now we know the coefficients of the consecutive terms are equal. So we equate the coefficients of terms \[{P_{r + 1}},{P_{r + 2}}\].
\[{ \Rightarrow ^{55}}{C_r}{(2)^{55 - r}}{(\dfrac{1}{3})^r}{ = ^{55}}{C_{r + 1}}{(2)^{54 - r}}{(\dfrac{1}{3})^{r + 1}}\]
Substitute the values from equation (1) and (2)
\[ \Rightarrow \dfrac{{55!}}{{(55 - r)!(r)!}}{(2)^{55 - r}}{(\dfrac{1}{3})^r} = \dfrac{{55!}}{{(54 - r)!(r + 1)!}}{(2)^{54 - r}}{(\dfrac{1}{3})^{r + 1}}\] … (3)
Now using \[(n + 1)! = (n + 1)(n)!\] we expand the terms of factorial on both sides and write \[(55 - r)! = (55 - r)(55 - r - 1)! = (55 - r)(54 - r)!\]
\[(r + 1)! = (r + 1)(r)!\]
And using the rule of exponents \[{a^{m + n}} = {a^m}{a^n}\] we write
\[{(2)^{55 - r}} = {(2)^{1 + 54 - r}} = (2){(2)^{54 - r}}\]
\[{(\dfrac{1}{3})^{r + 1}} = {(\dfrac{1}{3})^r}(\dfrac{1}{3})\]
Substituting the values in equation (3)
\[
\Rightarrow \dfrac{{55!}}{{(55 - r)(55 - r - 1)!(r)!}}{(2)^{1 + 54 - r}}{(\dfrac{1}{3})^r} = \dfrac{{55!}}{{(54 - r)!(r + 1)(r)!}}{(2)^{54 - r}}{(\dfrac{1}{3})^r}(\dfrac{1}{3}) \\
\Rightarrow \dfrac{{55!}}{{(55 - r)(54 - r)!(r)!}}(2){(2)^{54 - r}}{(\dfrac{1}{3})^r} = \dfrac{{55!}}{{(54 - r)!(r + 1)(r)!}}{(2)^{54 - r}}{(\dfrac{1}{3})^r}(\dfrac{1}{3}) \\
\]
Cancel out same terms from both sides of the equations
\[ \Rightarrow \dfrac{1}{{(55 - r)}}(2) = \dfrac{1}{{(r + 1)}}(\dfrac{1}{3})\]
Cross multiply the terms on both sides
\[
\Rightarrow 3 \times 2 \times (r + 1) = 55 - r \\
\Rightarrow 6(r + 1) = 55 - r \\
\Rightarrow 6r + 6 = 55 - r \\
\]
Shift the terms with variable on one side and constants on other side of the equation
\[
\Rightarrow 6r + r = 55 - 6 \\
\Rightarrow 7r = 49 \\
\]
Divide both sides by 7
\[ \Rightarrow \dfrac{{7r}}{7} = \dfrac{{49}}{7}\]
Cancel out terms from numerator and denominator
\[ \Rightarrow r = 7\]
Substituting the value of r in \[{P_{r + 1}},{P_{r + 2}}\] we get the two consecutive terms as \[{P_8},{P_9}\]
Therefore, \[{8^{th}}\] and \[{9^{th}}\] terms are having equal coefficients
So, option B is correct.
Note: Students are likely to make mistake while writing the factorial into simpler form as they tend to make mistake of writing \[(55 - r)! = (55 - r)(55 - (r - 1))! = (55 - r)(56 - r)!\] which is wrong, we have to subtract 1 from whole term inside the bracket.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

