
If $\left( {1 - \cos A} \right)\left( {1 - \cos B} \right)\left( {1 - \cos C} \right) = \sin A\sin B\sin C,$ then find the value of $\left( {1 + \cos A} \right)\left( {1 + \cos B} \right)\left( {1 + \cos C} \right) = $
a) $\cos A\cos B\cos C$
b) $\sin A\sin B\sin C$
c) $ - \cos A\cos B\cos C$
d) $ - \sin A\sin B\sin C$
Answer
592.8k+ views
Hint: Here we will use the basic trigonometric identities for equating both the sides of = sign, so that we can reach to the solution. To solve this problem, we need to remember the formulas of trigonometry & apply those attentively.
Complete step-by-step answer:
Given- $\left( {1 - \cos A} \right)\left( {1 - \cos B} \right)\left( {1 - \cos C} \right) = \sin A\sin B\sin C$
We have to find here $1 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}$.
We know some formulas from sub multiple angles of trigonometry & generally we apply these formulas in case half of the angles are involved in the question along with different trigonometric functions -
$\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
$\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
$1 + \cos \theta = 2{\cos ^2}\dfrac{\theta }{2}$
From the given condition, we have
$\left( {1 - \cos A} \right)\left( {1 - \cos B} \right)\left( {1 - \cos C} \right) = \sin A\sin B\sin C$
$2{\sin ^2}\dfrac{A}{2}.2{\sin ^2}\dfrac{B}{2}.2{\sin ^2}\dfrac{C}{2} = \sin A\sin B\sin C$
[ applying formula $1 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}$]
$ \Rightarrow 8{\sin ^2}\dfrac{A}{2}{\sin ^2}\dfrac{B}{2}{\sin ^2}\dfrac{C}{2} = 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}.2\sin \dfrac{B}{2}\cos \dfrac{B}{2}.2\sin \dfrac{C}{2}\cos \dfrac{C}{2}$$ \Rightarrow 8{\sin ^2}\dfrac{A}{2}{\sin ^2}\dfrac{B}{2}{\sin ^2}\dfrac{C}{2} = 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}.2\sin \dfrac{B}{2}\cos \dfrac{B}{2}.2\sin \dfrac{C}{2}\cos \dfrac{C}{2}$
[ multiplying all the numerical multiples in one side & $\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$ on the other ]
$ \Rightarrow 8{\sin ^2}\dfrac{A}{2}{\sin ^2}\dfrac{B}{2}{\sin ^2}\dfrac{C}{2} = 8\sin \dfrac{A}{2}\cos \dfrac{A}{2}.\sin \dfrac{B}{2}\cos \dfrac{B}{2}.\sin \dfrac{C}{2}\cos \dfrac{C}{2}$
[ dividing $8\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}$from both sides.]
$ \Rightarrow \sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2} = \cos \dfrac{A}{2}\cos \dfrac{B}{2}\cos \dfrac{C}{2}$
Squaring both sides, we have
${\sin ^2}\dfrac{A}{2}{\sin ^2}\dfrac{B}{2}{\sin ^2}\dfrac{C}{2} = {\cos ^2}\dfrac{A}{2}{\cos ^2}\dfrac{B}{2}{\cos ^2}\dfrac{C}{2}$…………. (1)
Now,
$\left( {1 + \cos A} \right)\left( {1 + \cos B} \right)\left( {1 + \cos C} \right)$
$ = 2{\cos ^2}\dfrac{A}{2}.2{\cos ^2}\dfrac{B}{2}.2{\cos ^2}\dfrac{C}{2}$[ Getting all the numerical multiples multiplied]
\[ = 8{\cos ^2}\dfrac{A}{2}{\cos ^2}\dfrac{B}{2}{\cos ^2}\dfrac{C}{2}\]
$ = 8{\sin ^2}\dfrac{A}{2}{\sin ^2}\dfrac{B}{2}{\sin ^2}\dfrac{C}{2}$ [Putting the value of ${\cos ^2}\dfrac{A}{2}{\cos ^2}\dfrac{B}{2}{\cos ^2}\dfrac{C}{2}$ from eq. (1)]
$ = 2{\sin ^2}\dfrac{A}{2}.2{\sin ^2}\dfrac{B}{2}.2{\sin ^2}\dfrac{C}{2}$
[ To get in such form so that having formula $1 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}$can be applied ]
$ = \left( {1 - \cos A} \right)\left( {1 - \cos B} \right)\left( {1 - \cos C} \right)$
$ = \sin A\sin B\sin C$
Hence, the correct option is B.
Note: To solve this we should have concepts & formulas very clear in our mind. In this type of problem, one should take the hint from the given condition in the question and apply it to obtain the solution. Thus, all the trigonometric identities should be remembered. There is a high chance of getting confused while using formulas in different places.
Formulas should be remembered are:
$1 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}$
$\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
$1 + \cos \theta = 2{\cos ^2}\dfrac{\theta }{2}$
Complete step-by-step answer:
Given- $\left( {1 - \cos A} \right)\left( {1 - \cos B} \right)\left( {1 - \cos C} \right) = \sin A\sin B\sin C$
We have to find here $1 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}$.
We know some formulas from sub multiple angles of trigonometry & generally we apply these formulas in case half of the angles are involved in the question along with different trigonometric functions -
$\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
$\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
$1 + \cos \theta = 2{\cos ^2}\dfrac{\theta }{2}$
From the given condition, we have
$\left( {1 - \cos A} \right)\left( {1 - \cos B} \right)\left( {1 - \cos C} \right) = \sin A\sin B\sin C$
$2{\sin ^2}\dfrac{A}{2}.2{\sin ^2}\dfrac{B}{2}.2{\sin ^2}\dfrac{C}{2} = \sin A\sin B\sin C$
[ applying formula $1 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}$]
$ \Rightarrow 8{\sin ^2}\dfrac{A}{2}{\sin ^2}\dfrac{B}{2}{\sin ^2}\dfrac{C}{2} = 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}.2\sin \dfrac{B}{2}\cos \dfrac{B}{2}.2\sin \dfrac{C}{2}\cos \dfrac{C}{2}$$ \Rightarrow 8{\sin ^2}\dfrac{A}{2}{\sin ^2}\dfrac{B}{2}{\sin ^2}\dfrac{C}{2} = 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}.2\sin \dfrac{B}{2}\cos \dfrac{B}{2}.2\sin \dfrac{C}{2}\cos \dfrac{C}{2}$
[ multiplying all the numerical multiples in one side & $\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$ on the other ]
$ \Rightarrow 8{\sin ^2}\dfrac{A}{2}{\sin ^2}\dfrac{B}{2}{\sin ^2}\dfrac{C}{2} = 8\sin \dfrac{A}{2}\cos \dfrac{A}{2}.\sin \dfrac{B}{2}\cos \dfrac{B}{2}.\sin \dfrac{C}{2}\cos \dfrac{C}{2}$
[ dividing $8\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}$from both sides.]
$ \Rightarrow \sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2} = \cos \dfrac{A}{2}\cos \dfrac{B}{2}\cos \dfrac{C}{2}$
Squaring both sides, we have
${\sin ^2}\dfrac{A}{2}{\sin ^2}\dfrac{B}{2}{\sin ^2}\dfrac{C}{2} = {\cos ^2}\dfrac{A}{2}{\cos ^2}\dfrac{B}{2}{\cos ^2}\dfrac{C}{2}$…………. (1)
Now,
$\left( {1 + \cos A} \right)\left( {1 + \cos B} \right)\left( {1 + \cos C} \right)$
$ = 2{\cos ^2}\dfrac{A}{2}.2{\cos ^2}\dfrac{B}{2}.2{\cos ^2}\dfrac{C}{2}$[ Getting all the numerical multiples multiplied]
\[ = 8{\cos ^2}\dfrac{A}{2}{\cos ^2}\dfrac{B}{2}{\cos ^2}\dfrac{C}{2}\]
$ = 8{\sin ^2}\dfrac{A}{2}{\sin ^2}\dfrac{B}{2}{\sin ^2}\dfrac{C}{2}$ [Putting the value of ${\cos ^2}\dfrac{A}{2}{\cos ^2}\dfrac{B}{2}{\cos ^2}\dfrac{C}{2}$ from eq. (1)]
$ = 2{\sin ^2}\dfrac{A}{2}.2{\sin ^2}\dfrac{B}{2}.2{\sin ^2}\dfrac{C}{2}$
[ To get in such form so that having formula $1 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}$can be applied ]
$ = \left( {1 - \cos A} \right)\left( {1 - \cos B} \right)\left( {1 - \cos C} \right)$
$ = \sin A\sin B\sin C$
Hence, the correct option is B.
Note: To solve this we should have concepts & formulas very clear in our mind. In this type of problem, one should take the hint from the given condition in the question and apply it to obtain the solution. Thus, all the trigonometric identities should be remembered. There is a high chance of getting confused while using formulas in different places.
Formulas should be remembered are:
$1 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}$
$\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
$1 + \cos \theta = 2{\cos ^2}\dfrac{\theta }{2}$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

