
If \[{{l}_{1}}\], \[{{m}_{1}}\], \[{{n}_{1}}\]; \[{{l}_{2}}\], \[{{m}_{2}}\], \[{{n}_{2}}\]; \[{{l}_{3}}\], \[{{m}_{3}}\], \[{{n}_{3}}\] are real quantities satisfying six relations \[l_{1}^{2}+m_{1}^{2}+n_{1}^{2}=l_{2}^{2}+m_{2}^{2}+n_{2}^{2}=l_{3}^{2}+m_{3}^{2}+n_{3}^{2}=1\], ${{l}_{2}}{{l}_{3}}+{{m}_{2}}{{m}_{3}}+{{n}_{2}}{{n}_{3}}={{l}_{3}}{{l}_{1}}+{{m}_{3}}{{m}_{1}}+{{n}_{3}}{{n}_{1}}={{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}}=0$ and $\left| \begin{matrix}
{{l}_{1}} & {{m}_{1}} & {{n}_{1}} \\
{{l}_{2}} & {{m}_{2}} & {{n}_{2}} \\
{{l}_{3}} & {{m}_{3}} & {{n}_{3}} \\
\end{matrix} \right|=\pm k$. Find the value of k?
Answer
576.3k+ views
Hint: We start solving the problem by finding the transpose of the given matrix. We use the fact that the determinant of product of two matrices is equal to the product of the determinant of the individual matrices to multiply the determinants of given matrix and its transpose. We use the fact that the determinant of the matrix is equal to the determinant of the transpose of the matrix and make required calculations to get the value of k.
Complete step by step answer:
Given that we have six real quantities \[{{l}_{1}}\], \[{{m}_{1}}\], \[{{n}_{1}}\]; \[{{l}_{2}}\], \[{{m}_{2}}\], \[{{n}_{2}}\]; \[{{l}_{3}}\], \[{{m}_{3}}\], \[{{n}_{3}}\] which are satisfying the relations \[l_{1}^{2}+m_{1}^{2}+n_{1}^{2}=l_{2}^{2}+m_{2}^{2}+n_{2}^{2}=l_{3}^{2}+m_{3}^{2}+n_{3}^{2}=1\], ${{l}_{2}}{{l}_{3}}+{{m}_{2}}{{m}_{3}}+{{n}_{2}}{{n}_{3}}={{l}_{3}}{{l}_{1}}+{{m}_{3}}{{m}_{1}}+{{n}_{3}}{{n}_{1}}={{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}}=0$ and $\left| \begin{matrix}
{{l}_{1}} & {{m}_{1}} & {{n}_{1}} \\
{{l}_{2}} & {{m}_{2}} & {{n}_{2}} \\
{{l}_{3}} & {{m}_{3}} & {{n}_{3}} \\
\end{matrix} \right|=\pm k$. We need to find the value of k.
Let us the matrix $\left[ \begin{matrix}
{{l}_{1}} & {{m}_{1}} & {{n}_{1}} \\
{{l}_{2}} & {{m}_{2}} & {{n}_{2}} \\
{{l}_{3}} & {{m}_{3}} & {{n}_{3}} \\
\end{matrix} \right]$ as ‘A’. Let us find the transpose of the matrix ‘A’. We know that transpose of a matrix is found by interchanging the rows and of a matrix.
So, we get ${{A}^{T}}=\left[ \begin{matrix}
{{l}_{1}} & {{l}_{2}} & {{l}_{3}} \\
{{m}_{1}} & {{m}_{2}} & {{m}_{3}} \\
{{n}_{1}} & {{n}_{2}} & {{n}_{3}} \\
\end{matrix} \right]$.
We know that for two matrices P and Q, $\det \left( PQ \right)=\det \left( P \right).\det \left( Q \right)$.
Let us find the value of $\det \left( A{{A}^{T}} \right)$.
$\Rightarrow \det \left( A{{A}^{T}} \right)=\det \left( \left[ \begin{matrix}
{{l}_{1}} & {{m}_{1}} & {{n}_{1}} \\
{{l}_{2}} & {{m}_{2}} & {{n}_{2}} \\
{{l}_{3}} & {{m}_{3}} & {{n}_{3}} \\
\end{matrix} \right]\times \left[ \begin{matrix}
{{l}_{1}} & {{l}_{2}} & {{l}_{3}} \\
{{m}_{1}} & {{m}_{2}} & {{m}_{3}} \\
{{n}_{1}} & {{n}_{2}} & {{n}_{3}} \\
\end{matrix} \right] \right)$.
\[\Rightarrow \det \left( A \right).\det \left( {{A}^{T}} \right)=\det \left[ \begin{matrix}
\left( {{l}_{1}}\times {{l}_{1}} \right)+\left( {{m}_{1}}\times {{m}_{1}} \right)+\left( {{n}_{1}}\times {{n}_{1}} \right) & \left( {{l}_{1}}\times {{l}_{2}} \right)+\left( {{m}_{1}}\times {{m}_{2}} \right)+\left( {{n}_{1}}\times {{n}_{2}} \right) & \left( {{l}_{1}}\times {{l}_{3}} \right)+\left( {{m}_{1}}\times {{m}_{3}} \right)+\left( {{n}_{1}}\times {{n}_{3}} \right) \\
\left( {{l}_{2}}\times {{l}_{1}} \right)+\left( {{m}_{2}}\times {{m}_{1}} \right)+\left( {{n}_{2}}\times {{n}_{1}} \right) & \left( {{l}_{2}}\times {{l}_{2}} \right)+\left( {{m}_{2}}\times {{m}_{2}} \right)+\left( {{n}_{2}}\times {{n}_{2}} \right) & \left( {{l}_{2}}\times {{l}_{3}} \right)+\left( {{m}_{2}}\times {{m}_{3}} \right)+\left( {{n}_{2}}\times {{n}_{3}} \right) \\
\left( {{l}_{3}}\times {{l}_{1}} \right)+\left( {{m}_{3}}\times {{m}_{1}} \right)+\left( {{n}_{3}}\times {{n}_{1}} \right) & \left( {{l}_{3}}\times {{l}_{2}} \right)+\left( {{m}_{3}}\times {{m}_{2}} \right)+\left( {{n}_{3}}\times {{n}_{2}} \right) & \left( {{l}_{3}}\times {{l}_{3}} \right)+\left( {{m}_{3}}\times {{m}_{3}} \right)+\left( {{n}_{3}}\times {{n}_{3}} \right) \\
\end{matrix} \right]\].
We know that $\det \left( P \right)=\det \left( {{P}^{T}} \right)$. We use this in the above determinant.
\[\Rightarrow \det \left( A \right).\det \left( A \right)=\det \left[ \begin{matrix}
\left( l_{2}^{2} \right)+\left( m_{2}^{2} \right)+\left( n_{2}^{2} \right) & \left( {{l}_{1}}{{l}_{2}} \right)+\left( {{m}_{1}}{{m}_{2}} \right)+\left( {{n}_{1}}{{n}_{2}} \right) & \left( {{l}_{1}}{{l}_{3}} \right)+\left( {{m}_{1}}{{m}_{3}} \right)+\left( {{n}_{1}}{{n}_{3}} \right) \\
\left( {{l}_{2}}{{l}_{1}} \right)+\left( {{m}_{2}}{{m}_{1}} \right)+\left( {{n}_{2}}{{n}_{1}} \right) & \left( l_{2}^{2} \right)+\left( m_{2}^{2} \right)+\left( n_{2}^{2} \right) & \left( {{l}_{2}}{{l}_{3}} \right)+\left( {{m}_{2}}{{m}_{3}} \right)+\left( {{n}_{2}}{{n}_{3}} \right) \\
\left( {{l}_{3}}{{l}_{1}} \right)+\left( {{m}_{3}}{{m}_{1}} \right)+\left( {{n}_{3}}{{n}_{1}} \right) & \left( {{l}_{3}}{{l}_{2}} \right)+\left( {{m}_{3}}{{m}_{2}} \right)+\left( {{n}_{3}}{{n}_{2}} \right) & \left( l_{3}^{2} \right)+\left( m_{3}^{2} \right)+\left( n_{3}^{2} \right) \\
\end{matrix} \right]\].
\[\Rightarrow {{\left( \det \left( A \right) \right)}^{2}}=\det \left[ \begin{matrix}
l_{2}^{2}+m_{2}^{2}+n_{2}^{2} & {{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}} & {{l}_{3}}{{l}_{1}}+{{m}_{3}}{{m}_{1}}+{{n}_{3}}{{n}_{1}} \\
{{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}} & l_{2}^{2}+m_{2}^{2}+n_{2}^{2} & {{l}_{2}}{{l}_{3}}+{{m}_{2}}{{m}_{3}}+{{n}_{2}}{{n}_{3}} \\
{{l}_{3}}{{l}_{1}}+{{m}_{3}}{{m}_{1}}+{{n}_{3}}{{n}_{1}} & {{l}_{2}}{{l}_{2}}+{{m}_{2}}{{m}_{3}}+{{n}_{2}}{{n}_{3}} & l_{3}^{2}+m_{3}^{2}+n_{3}^{2} \\
\end{matrix} \right]\].
According to the problem, we have \[l_{1}^{2}+m_{1}^{2}+n_{1}^{2}=l_{2}^{2}+m_{2}^{2}+n_{2}^{2}=l_{3}^{2}+m_{3}^{2}+n_{3}^{2}=1\] and ${{l}_{2}}{{l}_{3}}+{{m}_{2}}{{m}_{3}}+{{n}_{2}}{{n}_{3}}={{l}_{3}}{{l}_{1}}+{{m}_{3}}{{m}_{1}}+{{n}_{3}}{{n}_{1}}={{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}}=0$. We substitute these values in the matrix. We have also got the value of $\det \left( A \right)=\pm k$.
\[\Rightarrow {{\left( \pm k \right)}^{2}}=\left| \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right|\].
We know that the determinant of the matrix $\left[ \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right]$ is $\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\times \left| \begin{matrix}
e & f \\
h & i \\
\end{matrix} \right|+b\times \left| \begin{matrix}
d & f \\
g & i \\
\end{matrix} \right|+c\times \left| \begin{matrix}
d & e \\
g & h \\
\end{matrix} \right|$. We apply this to find the determinant \[\left| \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right|\].
\[\Rightarrow {{k}^{2}}=1\times \left| \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right|+0\times \left| \begin{matrix}
0 & 0 \\
0 & 1 \\
\end{matrix} \right|+0\times \left| \begin{matrix}
0 & 1 \\
0 & 0 \\
\end{matrix} \right|\].
We know that the determinant of the matrix $\left[ \begin{matrix}
p & q \\
r & s \\
\end{matrix} \right]$ is $\left| \begin{matrix}
p & q \\
r & s \\
\end{matrix} \right|=\left( p\times s \right)-\left( q\times r \right)$.
\[\Rightarrow {{k}^{2}}=1\times \left( \left( 1\times 1 \right)-\left( 0\times 0 \right) \right)+0+0\].
\[\Rightarrow {{k}^{2}}=1-0\].
\[\Rightarrow {{k}^{2}}=1\].
\[\Rightarrow k=1\].
We have found the value of k as 1.
∴ The value of the k is 1.
Note: Here, we have taken only a positive root for the value of k as the value of the determinant given in the problem is $\pm k$. Whenever we get a problem involving the multiplication of the elements of a given matrix, we need to remember that there can be a possibility of multiplication of two determinants. Similarly, we can expect problems which may involve subtraction and change of rows while performing the determinants to get the required answers.
Complete step by step answer:
Given that we have six real quantities \[{{l}_{1}}\], \[{{m}_{1}}\], \[{{n}_{1}}\]; \[{{l}_{2}}\], \[{{m}_{2}}\], \[{{n}_{2}}\]; \[{{l}_{3}}\], \[{{m}_{3}}\], \[{{n}_{3}}\] which are satisfying the relations \[l_{1}^{2}+m_{1}^{2}+n_{1}^{2}=l_{2}^{2}+m_{2}^{2}+n_{2}^{2}=l_{3}^{2}+m_{3}^{2}+n_{3}^{2}=1\], ${{l}_{2}}{{l}_{3}}+{{m}_{2}}{{m}_{3}}+{{n}_{2}}{{n}_{3}}={{l}_{3}}{{l}_{1}}+{{m}_{3}}{{m}_{1}}+{{n}_{3}}{{n}_{1}}={{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}}=0$ and $\left| \begin{matrix}
{{l}_{1}} & {{m}_{1}} & {{n}_{1}} \\
{{l}_{2}} & {{m}_{2}} & {{n}_{2}} \\
{{l}_{3}} & {{m}_{3}} & {{n}_{3}} \\
\end{matrix} \right|=\pm k$. We need to find the value of k.
Let us the matrix $\left[ \begin{matrix}
{{l}_{1}} & {{m}_{1}} & {{n}_{1}} \\
{{l}_{2}} & {{m}_{2}} & {{n}_{2}} \\
{{l}_{3}} & {{m}_{3}} & {{n}_{3}} \\
\end{matrix} \right]$ as ‘A’. Let us find the transpose of the matrix ‘A’. We know that transpose of a matrix is found by interchanging the rows and of a matrix.
So, we get ${{A}^{T}}=\left[ \begin{matrix}
{{l}_{1}} & {{l}_{2}} & {{l}_{3}} \\
{{m}_{1}} & {{m}_{2}} & {{m}_{3}} \\
{{n}_{1}} & {{n}_{2}} & {{n}_{3}} \\
\end{matrix} \right]$.
We know that for two matrices P and Q, $\det \left( PQ \right)=\det \left( P \right).\det \left( Q \right)$.
Let us find the value of $\det \left( A{{A}^{T}} \right)$.
$\Rightarrow \det \left( A{{A}^{T}} \right)=\det \left( \left[ \begin{matrix}
{{l}_{1}} & {{m}_{1}} & {{n}_{1}} \\
{{l}_{2}} & {{m}_{2}} & {{n}_{2}} \\
{{l}_{3}} & {{m}_{3}} & {{n}_{3}} \\
\end{matrix} \right]\times \left[ \begin{matrix}
{{l}_{1}} & {{l}_{2}} & {{l}_{3}} \\
{{m}_{1}} & {{m}_{2}} & {{m}_{3}} \\
{{n}_{1}} & {{n}_{2}} & {{n}_{3}} \\
\end{matrix} \right] \right)$.
\[\Rightarrow \det \left( A \right).\det \left( {{A}^{T}} \right)=\det \left[ \begin{matrix}
\left( {{l}_{1}}\times {{l}_{1}} \right)+\left( {{m}_{1}}\times {{m}_{1}} \right)+\left( {{n}_{1}}\times {{n}_{1}} \right) & \left( {{l}_{1}}\times {{l}_{2}} \right)+\left( {{m}_{1}}\times {{m}_{2}} \right)+\left( {{n}_{1}}\times {{n}_{2}} \right) & \left( {{l}_{1}}\times {{l}_{3}} \right)+\left( {{m}_{1}}\times {{m}_{3}} \right)+\left( {{n}_{1}}\times {{n}_{3}} \right) \\
\left( {{l}_{2}}\times {{l}_{1}} \right)+\left( {{m}_{2}}\times {{m}_{1}} \right)+\left( {{n}_{2}}\times {{n}_{1}} \right) & \left( {{l}_{2}}\times {{l}_{2}} \right)+\left( {{m}_{2}}\times {{m}_{2}} \right)+\left( {{n}_{2}}\times {{n}_{2}} \right) & \left( {{l}_{2}}\times {{l}_{3}} \right)+\left( {{m}_{2}}\times {{m}_{3}} \right)+\left( {{n}_{2}}\times {{n}_{3}} \right) \\
\left( {{l}_{3}}\times {{l}_{1}} \right)+\left( {{m}_{3}}\times {{m}_{1}} \right)+\left( {{n}_{3}}\times {{n}_{1}} \right) & \left( {{l}_{3}}\times {{l}_{2}} \right)+\left( {{m}_{3}}\times {{m}_{2}} \right)+\left( {{n}_{3}}\times {{n}_{2}} \right) & \left( {{l}_{3}}\times {{l}_{3}} \right)+\left( {{m}_{3}}\times {{m}_{3}} \right)+\left( {{n}_{3}}\times {{n}_{3}} \right) \\
\end{matrix} \right]\].
We know that $\det \left( P \right)=\det \left( {{P}^{T}} \right)$. We use this in the above determinant.
\[\Rightarrow \det \left( A \right).\det \left( A \right)=\det \left[ \begin{matrix}
\left( l_{2}^{2} \right)+\left( m_{2}^{2} \right)+\left( n_{2}^{2} \right) & \left( {{l}_{1}}{{l}_{2}} \right)+\left( {{m}_{1}}{{m}_{2}} \right)+\left( {{n}_{1}}{{n}_{2}} \right) & \left( {{l}_{1}}{{l}_{3}} \right)+\left( {{m}_{1}}{{m}_{3}} \right)+\left( {{n}_{1}}{{n}_{3}} \right) \\
\left( {{l}_{2}}{{l}_{1}} \right)+\left( {{m}_{2}}{{m}_{1}} \right)+\left( {{n}_{2}}{{n}_{1}} \right) & \left( l_{2}^{2} \right)+\left( m_{2}^{2} \right)+\left( n_{2}^{2} \right) & \left( {{l}_{2}}{{l}_{3}} \right)+\left( {{m}_{2}}{{m}_{3}} \right)+\left( {{n}_{2}}{{n}_{3}} \right) \\
\left( {{l}_{3}}{{l}_{1}} \right)+\left( {{m}_{3}}{{m}_{1}} \right)+\left( {{n}_{3}}{{n}_{1}} \right) & \left( {{l}_{3}}{{l}_{2}} \right)+\left( {{m}_{3}}{{m}_{2}} \right)+\left( {{n}_{3}}{{n}_{2}} \right) & \left( l_{3}^{2} \right)+\left( m_{3}^{2} \right)+\left( n_{3}^{2} \right) \\
\end{matrix} \right]\].
\[\Rightarrow {{\left( \det \left( A \right) \right)}^{2}}=\det \left[ \begin{matrix}
l_{2}^{2}+m_{2}^{2}+n_{2}^{2} & {{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}} & {{l}_{3}}{{l}_{1}}+{{m}_{3}}{{m}_{1}}+{{n}_{3}}{{n}_{1}} \\
{{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}} & l_{2}^{2}+m_{2}^{2}+n_{2}^{2} & {{l}_{2}}{{l}_{3}}+{{m}_{2}}{{m}_{3}}+{{n}_{2}}{{n}_{3}} \\
{{l}_{3}}{{l}_{1}}+{{m}_{3}}{{m}_{1}}+{{n}_{3}}{{n}_{1}} & {{l}_{2}}{{l}_{2}}+{{m}_{2}}{{m}_{3}}+{{n}_{2}}{{n}_{3}} & l_{3}^{2}+m_{3}^{2}+n_{3}^{2} \\
\end{matrix} \right]\].
According to the problem, we have \[l_{1}^{2}+m_{1}^{2}+n_{1}^{2}=l_{2}^{2}+m_{2}^{2}+n_{2}^{2}=l_{3}^{2}+m_{3}^{2}+n_{3}^{2}=1\] and ${{l}_{2}}{{l}_{3}}+{{m}_{2}}{{m}_{3}}+{{n}_{2}}{{n}_{3}}={{l}_{3}}{{l}_{1}}+{{m}_{3}}{{m}_{1}}+{{n}_{3}}{{n}_{1}}={{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}}=0$. We substitute these values in the matrix. We have also got the value of $\det \left( A \right)=\pm k$.
\[\Rightarrow {{\left( \pm k \right)}^{2}}=\left| \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right|\].
We know that the determinant of the matrix $\left[ \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right]$ is $\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\times \left| \begin{matrix}
e & f \\
h & i \\
\end{matrix} \right|+b\times \left| \begin{matrix}
d & f \\
g & i \\
\end{matrix} \right|+c\times \left| \begin{matrix}
d & e \\
g & h \\
\end{matrix} \right|$. We apply this to find the determinant \[\left| \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right|\].
\[\Rightarrow {{k}^{2}}=1\times \left| \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right|+0\times \left| \begin{matrix}
0 & 0 \\
0 & 1 \\
\end{matrix} \right|+0\times \left| \begin{matrix}
0 & 1 \\
0 & 0 \\
\end{matrix} \right|\].
We know that the determinant of the matrix $\left[ \begin{matrix}
p & q \\
r & s \\
\end{matrix} \right]$ is $\left| \begin{matrix}
p & q \\
r & s \\
\end{matrix} \right|=\left( p\times s \right)-\left( q\times r \right)$.
\[\Rightarrow {{k}^{2}}=1\times \left( \left( 1\times 1 \right)-\left( 0\times 0 \right) \right)+0+0\].
\[\Rightarrow {{k}^{2}}=1-0\].
\[\Rightarrow {{k}^{2}}=1\].
\[\Rightarrow k=1\].
We have found the value of k as 1.
∴ The value of the k is 1.
Note: Here, we have taken only a positive root for the value of k as the value of the determinant given in the problem is $\pm k$. Whenever we get a problem involving the multiplication of the elements of a given matrix, we need to remember that there can be a possibility of multiplication of two determinants. Similarly, we can expect problems which may involve subtraction and change of rows while performing the determinants to get the required answers.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

