
If $\text{ }{{\text{K}}_{\text{sp}}}$ of $\text{ A}{{\text{g}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{ }$is $\text{ 8 }\times \text{1}{{\text{0}}^{-12}}\,\text{ }$, the molar solubility of $\text{ A}{{\text{g}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{ }$in $\text{ 0}\text{.1 M AgN}{{\text{O}}_{\text{3}}}$ is :
A) $\text{ 8}\times \text{1}{{\text{0}}^{-12}}\text{M}$
B) $\text{ 8}\times \text{1}{{\text{0}}^{-10}}\text{M}$
C) $\text{ 8}\times \text{1}{{\text{0}}^{-11}}\text{M}$
D) $\text{ 8}\times \text{1}{{\text{0}}^{-13}}\text{M}$
Answer
546.9k+ views
Hint: The molar solubility is the number of moles of a substance that can be dissolved per litre of the solution after achieving saturation. The molar solubility for salt $\text{ AxBy }$ is written as,
$\text{ AxBy }\rightleftharpoons \text{ x}{{\text{A}}^{\text{+}}}\text{ (aq) + y}{{\text{B}}^{-}}\text{(aq) }$
Solubility product is,
$\text{ }{{\text{K}}_{\text{sp}}}\text{ = }{{\left[ {{\text{A}}^{\text{+}}} \right]}^{\text{x}}}{{\left[ {{\text{B}}^{-}} \right]}^{\text{y}}}\text{ }$
The presence of the same ion in the solution reduces the solubility of the salt. The increased concentration of ions is taken into consideration while solving for the molar solubility.
Complete step by step answer:
We have given the following data on the problem.
Solubility product of silver carbonate$\text{ A}{{\text{g}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{ }$ is $\text{ }{{\text{K}}_{\text{sp}}}\text{ = 8 }\times \text{1}{{\text{0}}^{-12}}\,\text{ }$
The $\text{ A}{{\text{g}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{ }$is in the $\text{ 0}\text{.1 M AgN}{{\text{O}}_{\text{3}}}$ solution.
We are interested to find out the molar solubility of $\text{ A}{{\text{g}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{ }$.
The solute like silver carbonate dissolves in the solution and forms corresponding silver and carbonate ions. The equilibrium reaction between the ions and solute is as shown below,
$\text{ }\begin{matrix}
{} & \text{A}{{\text{g}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{(s)} & \rightleftharpoons & \text{2A}{{\text{g}}^{\text{+}}}\text{(aq)} & \text{+} & \text{CO}_{\text{3}}^{\text{2-}} \\
\text{Before} & \text{S} & {} & \text{0} & {} & \text{0} \\
\text{After} & \text{-} & {} & \text{2S+0}\text{.1} & {} & \text{S} \\
\end{matrix}$
This $\text{ A}{{\text{g}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{ }$is dissolved in the $\text{ 0}\text{.1 M AgN}{{\text{O}}_{\text{3}}}$ solution. Both salts have the common$\text{ A}{{\text{g}}^{+}}\text{ }$. Thus, the silver ion from both the salt contributes towards the molar solubility.The solubility product for the $\text{ A}{{\text{g}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{ }$is written as follows,
$\text{ }{{\text{K}}_{\text{sp}}}\text{ = }{{\left[ \text{A}{{\text{g}}^{\text{+}}} \right]}^{2+}}\left[ \text{CO}_{3}^{2-} \right]\text{ }$
Let’s substitute the values in the above equation we have,
$\text{ 8}\times \text{1}{{\text{0}}^{-12}}\text{ = }{{\left( 0.1+2S \right)}^{2+}}\left( S \right)$
The value of solubility product is very small, thus we neglect it $\text{ 0}\text{.1 + 2S = 0}\text{.1 }$.The equation now becomes,
$\begin{align}
& \text{ 8}\times \text{1}{{\text{0}}^{-12}}\text{ = }{{\left( 0.1 \right)}^{2}}\left( S \right) \\
& S=\dfrac{\text{8}\times \text{1}{{\text{0}}^{-12}}}{{{\left( 0.1 \right)}^{2}}}=\text{8}\times \text{1}{{\text{0}}^{-10}}\text{M} \\
\end{align}$
Therefore, molar solubility of a silver carbonate in presence of silver nitrate is equal to $\text{ 8}\times \text{1}{{\text{0}}^{-10}}\text{M}$ .
Hence, (B) is the correct option.
Note: The common ion effect is the addition of the salt to a solution such that the two slats have the common ion.for example, silver carbonate and silver nitrate. Both salts have the common ion as silver. The solubility of the salt is measuredly affected by the common ion. The silver carbonate is less soluble as compared to silver nitrate, but the presence of silver nitrate increases the molar solubility of less soluble salt.
$\text{ AxBy }\rightleftharpoons \text{ x}{{\text{A}}^{\text{+}}}\text{ (aq) + y}{{\text{B}}^{-}}\text{(aq) }$
Solubility product is,
$\text{ }{{\text{K}}_{\text{sp}}}\text{ = }{{\left[ {{\text{A}}^{\text{+}}} \right]}^{\text{x}}}{{\left[ {{\text{B}}^{-}} \right]}^{\text{y}}}\text{ }$
The presence of the same ion in the solution reduces the solubility of the salt. The increased concentration of ions is taken into consideration while solving for the molar solubility.
Complete step by step answer:
We have given the following data on the problem.
Solubility product of silver carbonate$\text{ A}{{\text{g}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{ }$ is $\text{ }{{\text{K}}_{\text{sp}}}\text{ = 8 }\times \text{1}{{\text{0}}^{-12}}\,\text{ }$
The $\text{ A}{{\text{g}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{ }$is in the $\text{ 0}\text{.1 M AgN}{{\text{O}}_{\text{3}}}$ solution.
We are interested to find out the molar solubility of $\text{ A}{{\text{g}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{ }$.
The solute like silver carbonate dissolves in the solution and forms corresponding silver and carbonate ions. The equilibrium reaction between the ions and solute is as shown below,
$\text{ }\begin{matrix}
{} & \text{A}{{\text{g}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{(s)} & \rightleftharpoons & \text{2A}{{\text{g}}^{\text{+}}}\text{(aq)} & \text{+} & \text{CO}_{\text{3}}^{\text{2-}} \\
\text{Before} & \text{S} & {} & \text{0} & {} & \text{0} \\
\text{After} & \text{-} & {} & \text{2S+0}\text{.1} & {} & \text{S} \\
\end{matrix}$
This $\text{ A}{{\text{g}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{ }$is dissolved in the $\text{ 0}\text{.1 M AgN}{{\text{O}}_{\text{3}}}$ solution. Both salts have the common$\text{ A}{{\text{g}}^{+}}\text{ }$. Thus, the silver ion from both the salt contributes towards the molar solubility.The solubility product for the $\text{ A}{{\text{g}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{ }$is written as follows,
$\text{ }{{\text{K}}_{\text{sp}}}\text{ = }{{\left[ \text{A}{{\text{g}}^{\text{+}}} \right]}^{2+}}\left[ \text{CO}_{3}^{2-} \right]\text{ }$
Let’s substitute the values in the above equation we have,
$\text{ 8}\times \text{1}{{\text{0}}^{-12}}\text{ = }{{\left( 0.1+2S \right)}^{2+}}\left( S \right)$
The value of solubility product is very small, thus we neglect it $\text{ 0}\text{.1 + 2S = 0}\text{.1 }$.The equation now becomes,
$\begin{align}
& \text{ 8}\times \text{1}{{\text{0}}^{-12}}\text{ = }{{\left( 0.1 \right)}^{2}}\left( S \right) \\
& S=\dfrac{\text{8}\times \text{1}{{\text{0}}^{-12}}}{{{\left( 0.1 \right)}^{2}}}=\text{8}\times \text{1}{{\text{0}}^{-10}}\text{M} \\
\end{align}$
Therefore, molar solubility of a silver carbonate in presence of silver nitrate is equal to $\text{ 8}\times \text{1}{{\text{0}}^{-10}}\text{M}$ .
Hence, (B) is the correct option.
Note: The common ion effect is the addition of the salt to a solution such that the two slats have the common ion.for example, silver carbonate and silver nitrate. Both salts have the common ion as silver. The solubility of the salt is measuredly affected by the common ion. The silver carbonate is less soluble as compared to silver nitrate, but the presence of silver nitrate increases the molar solubility of less soluble salt.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

