Answer
Verified
425.1k+ views
Hint: We know that some acids such as oxalic acid, sulphuric acid etc. have more than one ionizable proton per molecule of the acid. These acids are known as polybasic acids. These acids will ionize or dissociate in more than one step. Phosphoric acid $\left( {{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{4}}}} \right)$ is a polybasic acid.
Complete step by step answer:
(i) Given that first $\left( {K{a_1}} \right)$, second $\left( {\,K{a_2}\,} \right)$ and third ionization constant of ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{4}}}$ are ${10^{ - 3}}$ , ${10^{ - 8}}$ and ${10^{ - 12}}$ respectively.
First dissociation reaction is,
\[{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{4}}} \rightleftharpoons {{\text{H}}^ + } + {\left( {{{\text{H}}_{\text{2}}}{\text{P}}{{\text{O}}_{\text{4}}}} \right)^ - }\,,\,K{a_1} = {10^{ - 3}}\]…… (1)
Second dissociation reaction is,
${\left( {{{\text{H}}_{\text{2}}}{\text{P}}{{\text{O}}_{\text{4}}}}\right)^-}\rightleftharpoons {{\text{H}}^ + } + {\left( {{\text{HP}}{{\text{O}}_{\text{4}}}} \right)^{2 - }},K{a_2} = {10^{ - 8}}$….. (2)
Third dissociation constant is,
${\left( {{\text{HP}}{{\text{O}}_{\text{4}}}} \right)^{- 2}} \rightleftharpoons {{\text{H}}^ + } + {\left( {{\text{P}}{{\text{O}}_{\text{4}}}} \right)^{ - 3}},K{a_3} = {10^{ - 12}}$…… (3)
From equation (2), we get to know that dissociation constant of ${\text{HP}}{{\text{O}}_{\text{4}}}^{2 - }$ is ${10^{ - 8}}$.
(ii) For a reaction, $Ka$ is calculated for conjugate acid and ${K_b}$ is calculated for conjugate base. To calculate ${K_b}$, we have to use the below formula.
${K_w} = Ka \times {K_b}$
Here, ${K_w}$ is ionization constant of water, $Ka$ is ionization constant and ${K_b}$ is basic constant.
Given that $Ka$ of ${\text{HP}}{{\text{O}}_{\text{4}}}^{2 - }$ is ${10^{ - 8}}$ and ${K_w} = {10^{ - 14}}$
So, $ \Rightarrow {K_b} = \dfrac{{{K_w}}}{{Ka}} = \dfrac{{{{10}^{ - 14}}}}{{{{10}^{ - 8}}}} = {10^{ - 6}}$
Therefore, ${K_b}$ of ${\text{HP}}{{\text{O}}_{\text{4}}}^{2 - }$ is ${10^{ - 6}}$.
(iii) Now we have to calculate the ${K_b}$ of ${{\text{H}}_2}{\text{P}}{{\text{O}}_{\text{4}}}^ - $
as in part (ii).
Given that $Ka$ of ${{\text{H}}_2}{\text{P}}{{\text{O}}_{\text{4}}}^ - $ is ${10^{ - 3}}$ and ${K_w} = {10^{ - 14}}$
So, $ \Rightarrow {K_b} = \dfrac{{{K_w}}}{{Ka}} = \dfrac{{{{10}^{ - 14}}}}{{{{10}^{ - 3}}}} = {10^{ - 11}}$
Therefore, ${K_b}$ of ${{\text{H}}_2}{\text{P}}{{\text{O}}_{\text{4}}}^ - $ is ${10^{ - 11}}$.
(iv) So, from the above calculation we calculated that,
${K_b}$ of ${{\text{H}}_2}{\text{P}}{{\text{O}}_{\text{4}}}^ - $ $\left( {{K_b}_{_1}} \right)$
is ${10^{ - 11}}$
${K_b}$ of ${\text{HP}}{{\text{O}}_{\text{4}}}^{2 - }$$\left( {{K_b}_{_2}} \right)$ is ${10^{ - 6}}$
Now, we have calculate the ${K_b}$ of ${\text{P}}{{\text{O}}_{\text{4}}}^{3 - }$ $\left( {{K_b}_{_3}} \right)$.
Given that $Ka$ of ${\text{P}}{{\text{O}}_{\text{4}}}^{ - 3}$ is ${10^{ - 12}}$
and ${K_w} = {10^{ - 14}}$
$ \Rightarrow {K_b} = \dfrac{{{K_w}}}{{Ka}} = \dfrac{{{{10}^{ - 14}}}}{{{{10}^{ - 12}}}} = {10^{ - 2}}$
So, the value of $K{b_3} = {10^{ - 2}}$
${K_b}_{_3} > {k_b}_{_2} > {k_b}_{_1}$
Note: It is to be noted that it is always difficult to remove a positively charged species (proton) from a negatively charged ions as compared to a neutral molecule because of the strong electrostatic force of attraction between proton and the anion with which it is present. As a result, the removal of proton from a monovalent anion is quite difficult and is even more difficult to remove the same from a divalent anion. Thus, the order of dissociation constants can be justified.
Complete step by step answer:
(i) Given that first $\left( {K{a_1}} \right)$, second $\left( {\,K{a_2}\,} \right)$ and third ionization constant of ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{4}}}$ are ${10^{ - 3}}$ , ${10^{ - 8}}$ and ${10^{ - 12}}$ respectively.
First dissociation reaction is,
\[{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{4}}} \rightleftharpoons {{\text{H}}^ + } + {\left( {{{\text{H}}_{\text{2}}}{\text{P}}{{\text{O}}_{\text{4}}}} \right)^ - }\,,\,K{a_1} = {10^{ - 3}}\]…… (1)
Second dissociation reaction is,
${\left( {{{\text{H}}_{\text{2}}}{\text{P}}{{\text{O}}_{\text{4}}}}\right)^-}\rightleftharpoons {{\text{H}}^ + } + {\left( {{\text{HP}}{{\text{O}}_{\text{4}}}} \right)^{2 - }},K{a_2} = {10^{ - 8}}$….. (2)
Third dissociation constant is,
${\left( {{\text{HP}}{{\text{O}}_{\text{4}}}} \right)^{- 2}} \rightleftharpoons {{\text{H}}^ + } + {\left( {{\text{P}}{{\text{O}}_{\text{4}}}} \right)^{ - 3}},K{a_3} = {10^{ - 12}}$…… (3)
From equation (2), we get to know that dissociation constant of ${\text{HP}}{{\text{O}}_{\text{4}}}^{2 - }$ is ${10^{ - 8}}$.
(ii) For a reaction, $Ka$ is calculated for conjugate acid and ${K_b}$ is calculated for conjugate base. To calculate ${K_b}$, we have to use the below formula.
${K_w} = Ka \times {K_b}$
Here, ${K_w}$ is ionization constant of water, $Ka$ is ionization constant and ${K_b}$ is basic constant.
Given that $Ka$ of ${\text{HP}}{{\text{O}}_{\text{4}}}^{2 - }$ is ${10^{ - 8}}$ and ${K_w} = {10^{ - 14}}$
So, $ \Rightarrow {K_b} = \dfrac{{{K_w}}}{{Ka}} = \dfrac{{{{10}^{ - 14}}}}{{{{10}^{ - 8}}}} = {10^{ - 6}}$
Therefore, ${K_b}$ of ${\text{HP}}{{\text{O}}_{\text{4}}}^{2 - }$ is ${10^{ - 6}}$.
(iii) Now we have to calculate the ${K_b}$ of ${{\text{H}}_2}{\text{P}}{{\text{O}}_{\text{4}}}^ - $
as in part (ii).
Given that $Ka$ of ${{\text{H}}_2}{\text{P}}{{\text{O}}_{\text{4}}}^ - $ is ${10^{ - 3}}$ and ${K_w} = {10^{ - 14}}$
So, $ \Rightarrow {K_b} = \dfrac{{{K_w}}}{{Ka}} = \dfrac{{{{10}^{ - 14}}}}{{{{10}^{ - 3}}}} = {10^{ - 11}}$
Therefore, ${K_b}$ of ${{\text{H}}_2}{\text{P}}{{\text{O}}_{\text{4}}}^ - $ is ${10^{ - 11}}$.
(iv) So, from the above calculation we calculated that,
${K_b}$ of ${{\text{H}}_2}{\text{P}}{{\text{O}}_{\text{4}}}^ - $ $\left( {{K_b}_{_1}} \right)$
is ${10^{ - 11}}$
${K_b}$ of ${\text{HP}}{{\text{O}}_{\text{4}}}^{2 - }$$\left( {{K_b}_{_2}} \right)$ is ${10^{ - 6}}$
Now, we have calculate the ${K_b}$ of ${\text{P}}{{\text{O}}_{\text{4}}}^{3 - }$ $\left( {{K_b}_{_3}} \right)$.
Given that $Ka$ of ${\text{P}}{{\text{O}}_{\text{4}}}^{ - 3}$ is ${10^{ - 12}}$
and ${K_w} = {10^{ - 14}}$
$ \Rightarrow {K_b} = \dfrac{{{K_w}}}{{Ka}} = \dfrac{{{{10}^{ - 14}}}}{{{{10}^{ - 12}}}} = {10^{ - 2}}$
So, the value of $K{b_3} = {10^{ - 2}}$
${K_b}_{_3} > {k_b}_{_2} > {k_b}_{_1}$
Note: It is to be noted that it is always difficult to remove a positively charged species (proton) from a negatively charged ions as compared to a neutral molecule because of the strong electrostatic force of attraction between proton and the anion with which it is present. As a result, the removal of proton from a monovalent anion is quite difficult and is even more difficult to remove the same from a divalent anion. Thus, the order of dissociation constants can be justified.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Discuss the main reasons for poverty in India
A Paragraph on Pollution in about 100-150 Words
Advantages and disadvantages of science
Why is monsoon considered a unifying bond class 10 social science CBSE
Give simple chemical tests to distinguish between the class 12 chemistry CBSE