Answer
Verified
435.9k+ views
Hint: Geometric progression (GP) is a type of sequence, where each succeeding term is obtained by multiplying each preceding term by a fixed number, which is called a common ratio.
If three numbers $a$,$b$ and $c$ are in GP; then they must follow the relation: ${b^2} = ac$
Complete step-by-step answer:
Given; $k - 1$, $k + 2$ and $3k$ are in GP.
We know that if three numbers $a$,$b$ and $c$; then ${b^2} = ac$
On applying the above relation to the given terms $k - 1$, $k + 2$ and $3k$; we get-
${\left( {k + 2} \right)^2} = \left( {k - 1} \right)\left( {3k} \right)$
$ \Rightarrow {k^2} + 4k + 4 = 3{k^2} - 3k$
$ \Rightarrow {k^2} - 3{k^2} + 4k + 3k + 4 = 0$
$ \Rightarrow - 2{k^2} + 7k + 4 = 0$
On multiplying by $ - 1$, we get-
$ \Rightarrow 2{k^2} - 7k - 4 = 0$ ….. (1)
On using factorization method-
$ \Rightarrow 2{k^2} - \left( {8 - 1} \right)k - 4 = 0$
$ \Rightarrow 2{k^2} - 8k + k - 4 = 0$
$ \Rightarrow 2k\left( {k - 4} \right) + 1\left( {k - 4} \right) = 0$
$ \Rightarrow \left( {k - 4} \right)\left( {2k + 1} \right) = 0$
$ \Rightarrow k = 4$ or $k = \dfrac{{ - 1}}{2}$
Hence the value of $k$ will be $4$ or $\dfrac{{ - 1}}{2}$.
Note: We can also solve the above mentioned equation (1) by using the quadratic formula which is given by,
$x = $$\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Now compare the equation (1), i.e., $2{k^2} - 7k - 4 = 0$with the standard quadratic equation $a{x^2} + bx + c = 0$; we get-
$a = 2,b = - 7,c = - 4$ and $x = k$
On putting all the values, we get-
$k = \dfrac{{ - \left( { - 7} \right) \pm \sqrt {{{\left( { - 7} \right)}^2} - 4 \times 2 \times \left( { - 4} \right)} }}{{2 \times 2}}$
$ \Rightarrow $$k = \dfrac{{7 \pm \sqrt {49 + 32} }}{4}$
$ \Rightarrow $$k = \dfrac{{7 \pm \sqrt {81} }}{4}$
$ \Rightarrow $$k = \dfrac{{7 \pm 9}}{4}$
$ \Rightarrow $$k = \dfrac{{7 + 9}}{4}$ or $k = \dfrac{{7 - 9}}{4}$
$ \Rightarrow $$k = \dfrac{{16}}{4}$ or $k = \dfrac{{ - 2}}{4}$
$ \Rightarrow $$k = 4$ or $k = \dfrac{{ - 1}}{2}$
Hence the value of $k$ will be $4$ or $\dfrac{{ - 1}}{2}$.
If three numbers $a$,$b$ and $c$ are in GP; then they must follow the relation: ${b^2} = ac$
Complete step-by-step answer:
Given; $k - 1$, $k + 2$ and $3k$ are in GP.
We know that if three numbers $a$,$b$ and $c$; then ${b^2} = ac$
On applying the above relation to the given terms $k - 1$, $k + 2$ and $3k$; we get-
${\left( {k + 2} \right)^2} = \left( {k - 1} \right)\left( {3k} \right)$
$ \Rightarrow {k^2} + 4k + 4 = 3{k^2} - 3k$
$ \Rightarrow {k^2} - 3{k^2} + 4k + 3k + 4 = 0$
$ \Rightarrow - 2{k^2} + 7k + 4 = 0$
On multiplying by $ - 1$, we get-
$ \Rightarrow 2{k^2} - 7k - 4 = 0$ ….. (1)
On using factorization method-
$ \Rightarrow 2{k^2} - \left( {8 - 1} \right)k - 4 = 0$
$ \Rightarrow 2{k^2} - 8k + k - 4 = 0$
$ \Rightarrow 2k\left( {k - 4} \right) + 1\left( {k - 4} \right) = 0$
$ \Rightarrow \left( {k - 4} \right)\left( {2k + 1} \right) = 0$
$ \Rightarrow k = 4$ or $k = \dfrac{{ - 1}}{2}$
Hence the value of $k$ will be $4$ or $\dfrac{{ - 1}}{2}$.
Note: We can also solve the above mentioned equation (1) by using the quadratic formula which is given by,
$x = $$\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Now compare the equation (1), i.e., $2{k^2} - 7k - 4 = 0$with the standard quadratic equation $a{x^2} + bx + c = 0$; we get-
$a = 2,b = - 7,c = - 4$ and $x = k$
On putting all the values, we get-
$k = \dfrac{{ - \left( { - 7} \right) \pm \sqrt {{{\left( { - 7} \right)}^2} - 4 \times 2 \times \left( { - 4} \right)} }}{{2 \times 2}}$
$ \Rightarrow $$k = \dfrac{{7 \pm \sqrt {49 + 32} }}{4}$
$ \Rightarrow $$k = \dfrac{{7 \pm \sqrt {81} }}{4}$
$ \Rightarrow $$k = \dfrac{{7 \pm 9}}{4}$
$ \Rightarrow $$k = \dfrac{{7 + 9}}{4}$ or $k = \dfrac{{7 - 9}}{4}$
$ \Rightarrow $$k = \dfrac{{16}}{4}$ or $k = \dfrac{{ - 2}}{4}$
$ \Rightarrow $$k = 4$ or $k = \dfrac{{ - 1}}{2}$
Hence the value of $k$ will be $4$ or $\dfrac{{ - 1}}{2}$.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The mountain range which stretches from Gujarat in class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths