
If $i=\sqrt{-1}$, then calculate the value of $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}$.
(a) $1-i\sqrt{3}$
(b) $-1+i\sqrt{3}$
(c) $i\sqrt{3}$
(d) $-i\sqrt{3}$
Answer
515.4k+ views
Hint: Use the fact that $w=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}$ is a cube root of unity and thus ${{w}^{3}}=1$ . Simplify the given expression, use the laws of exponents which state that ${{a}^{b}}\times {{a}^{c}}={{a}^{b+c}}$ and ${{\left( {{a}^{b}} \right)}^{c}}={{a}^{bc}}$ and calculate the value of the expression.
Complete step-by-step solution -
We have to calculate the value of the expression $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}$.
We know that $w=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}$ is a cube root of unity. Thus, we have ${{w}^{3}}=1$.
So, we can rewrite the expression $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}$ as $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{w}^{334}}+3{{w}^{365}}$.
We know that the laws of exponents state that ${{a}^{b}}\times {{a}^{c}}={{a}^{b+c}}$ and ${{\left( {{a}^{b}} \right)}^{c}}={{a}^{bc}}$.
So, we can rewrite ${{w}^{334}}$ as ${{w}^{334}}={{w}^{333+1}}={{\left( {{w}^{3}} \right)}^{111}}\times w$.
Similarly, we can rewrite ${{w}^{365}}$ as ${{w}^{365}}={{w}^{363+2}}={{\left( {{w}^{3}} \right)}^{121}}\times {{w}^{2}}$.
Substituting these values in the expression $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{w}^{334}}+3{{w}^{365}}$, we have $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{w}^{334}}+3{{w}^{365}}=4+5\left[ {{\left( {{w}^{3}} \right)}^{111}}\times w \right]+3\left[ {{\left( {{w}^{3}} \right)}^{121}}\times {{w}^{2}} \right]$.
We know that ${{w}^{3}}=1$.
Thus, we have $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{w}^{334}}+3{{w}^{365}}=4+5\left[ {{1}^{111}}\times w \right]+3\left[ {{1}^{121}}\times {{w}^{2}} \right]=4+5w+3{{w}^{2}}$.
By rearranging the terms of the above equation, we have $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5w+3{{w}^{2}}=4+4w+4{{w}^{2}}+w-{{w}^{2}}$.
We know that the roots of the equation ${{x}^{3}}=1$ are $1,w,{{w}^{2}}$.
We also know that if $\alpha ,\beta ,\gamma $ are roots of the cubic equation of the form $a{{x}^{3}}+b{{x}^{2}}+cx+d$, then we have $\alpha +\beta +\gamma =\dfrac{-b}{a}$, $\alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{c}{a}$ and $\alpha \beta \gamma =\dfrac{-d}{a}$.
Thus, we have $1+w+{{w}^{2}}=\dfrac{0}{1}=0$.
So, we have $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5w+3{{w}^{2}}=4+4w+4{{w}^{2}}+w-{{w}^{2}}=4\left( 1+w+{{w}^{2}} \right)+w-{{w}^{2}}$ .
Thus, we have $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4\left( 1+w+{{w}^{2}} \right)+w-{{w}^{2}}=4\left( 0 \right)+w-{{w}^{2}}=w-{{w}^{2}}$.
We will now calculate the value of ${{w}^{2}}$ using the algebraic identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
As $w=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}$, we have ${{w}^{2}}={{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{2}}={{\left( \dfrac{-1}{2} \right)}^{2}}+{{\left( \dfrac{i\sqrt{3}}{2} \right)}^{2}}+2\left( \dfrac{-1}{2} \right)\left( \dfrac{i\sqrt{3}}{2} \right)$.
As $i=\sqrt{-1}$, we have ${{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}=-1$.
Thus, we have ${{w}^{2}}={{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{2}}={{\left( \dfrac{-1}{2} \right)}^{2}}+{{\left( \dfrac{i\sqrt{3}}{2} \right)}^{2}}+2\left( \dfrac{-1}{2} \right)\left( \dfrac{i\sqrt{3}}{2} \right)=\dfrac{1}{4}+\dfrac{\left( -1 \right)3}{4}-\dfrac{i\sqrt{3}}{2}=\dfrac{1-3}{4}-\dfrac{i\sqrt{3}}{2}=\dfrac{-1}{2}-\dfrac{i\sqrt{3}}{2}$.
Substituting $w=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}$ and ${{w}^{2}}=\dfrac{-1}{2}-\dfrac{i\sqrt{3}}{2}$ in the equation $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4\left( 1+w+{{w}^{2}} \right)+w-{{w}^{2}}=4\left( 0 \right)+w-{{w}^{2}}=w-{{w}^{2}}$, we have $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=w-{{w}^{2}}=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}-\left( \dfrac{-1}{2}-\dfrac{i\sqrt{3}}{2} \right)=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}+\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2}=i\sqrt{3}$ .
Hence, the value of the expression $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}$ is $i\sqrt{3}$, which is option (c).
Note: We can’t solve this question without using the fact that $1,w,{{w}^{2}}$ are roots of the equation ${{x}^{3}}=1$. We also need to use the law of exponents to simplify the powers of the exponents; otherwise, it will be very time consuming to solve this question.
Complete step-by-step solution -
We have to calculate the value of the expression $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}$.
We know that $w=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}$ is a cube root of unity. Thus, we have ${{w}^{3}}=1$.
So, we can rewrite the expression $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}$ as $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{w}^{334}}+3{{w}^{365}}$.
We know that the laws of exponents state that ${{a}^{b}}\times {{a}^{c}}={{a}^{b+c}}$ and ${{\left( {{a}^{b}} \right)}^{c}}={{a}^{bc}}$.
So, we can rewrite ${{w}^{334}}$ as ${{w}^{334}}={{w}^{333+1}}={{\left( {{w}^{3}} \right)}^{111}}\times w$.
Similarly, we can rewrite ${{w}^{365}}$ as ${{w}^{365}}={{w}^{363+2}}={{\left( {{w}^{3}} \right)}^{121}}\times {{w}^{2}}$.
Substituting these values in the expression $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{w}^{334}}+3{{w}^{365}}$, we have $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{w}^{334}}+3{{w}^{365}}=4+5\left[ {{\left( {{w}^{3}} \right)}^{111}}\times w \right]+3\left[ {{\left( {{w}^{3}} \right)}^{121}}\times {{w}^{2}} \right]$.
We know that ${{w}^{3}}=1$.
Thus, we have $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{w}^{334}}+3{{w}^{365}}=4+5\left[ {{1}^{111}}\times w \right]+3\left[ {{1}^{121}}\times {{w}^{2}} \right]=4+5w+3{{w}^{2}}$.
By rearranging the terms of the above equation, we have $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5w+3{{w}^{2}}=4+4w+4{{w}^{2}}+w-{{w}^{2}}$.
We know that the roots of the equation ${{x}^{3}}=1$ are $1,w,{{w}^{2}}$.
We also know that if $\alpha ,\beta ,\gamma $ are roots of the cubic equation of the form $a{{x}^{3}}+b{{x}^{2}}+cx+d$, then we have $\alpha +\beta +\gamma =\dfrac{-b}{a}$, $\alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{c}{a}$ and $\alpha \beta \gamma =\dfrac{-d}{a}$.
Thus, we have $1+w+{{w}^{2}}=\dfrac{0}{1}=0$.
So, we have $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5w+3{{w}^{2}}=4+4w+4{{w}^{2}}+w-{{w}^{2}}=4\left( 1+w+{{w}^{2}} \right)+w-{{w}^{2}}$ .
Thus, we have $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4\left( 1+w+{{w}^{2}} \right)+w-{{w}^{2}}=4\left( 0 \right)+w-{{w}^{2}}=w-{{w}^{2}}$.
We will now calculate the value of ${{w}^{2}}$ using the algebraic identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
As $w=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}$, we have ${{w}^{2}}={{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{2}}={{\left( \dfrac{-1}{2} \right)}^{2}}+{{\left( \dfrac{i\sqrt{3}}{2} \right)}^{2}}+2\left( \dfrac{-1}{2} \right)\left( \dfrac{i\sqrt{3}}{2} \right)$.
As $i=\sqrt{-1}$, we have ${{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}=-1$.
Thus, we have ${{w}^{2}}={{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{2}}={{\left( \dfrac{-1}{2} \right)}^{2}}+{{\left( \dfrac{i\sqrt{3}}{2} \right)}^{2}}+2\left( \dfrac{-1}{2} \right)\left( \dfrac{i\sqrt{3}}{2} \right)=\dfrac{1}{4}+\dfrac{\left( -1 \right)3}{4}-\dfrac{i\sqrt{3}}{2}=\dfrac{1-3}{4}-\dfrac{i\sqrt{3}}{2}=\dfrac{-1}{2}-\dfrac{i\sqrt{3}}{2}$.
Substituting $w=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}$ and ${{w}^{2}}=\dfrac{-1}{2}-\dfrac{i\sqrt{3}}{2}$ in the equation $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4\left( 1+w+{{w}^{2}} \right)+w-{{w}^{2}}=4\left( 0 \right)+w-{{w}^{2}}=w-{{w}^{2}}$, we have $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=w-{{w}^{2}}=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}-\left( \dfrac{-1}{2}-\dfrac{i\sqrt{3}}{2} \right)=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}+\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2}=i\sqrt{3}$ .
Hence, the value of the expression $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}$ is $i\sqrt{3}$, which is option (c).
Note: We can’t solve this question without using the fact that $1,w,{{w}^{2}}$ are roots of the equation ${{x}^{3}}=1$. We also need to use the law of exponents to simplify the powers of the exponents; otherwise, it will be very time consuming to solve this question.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
