
If $i=\sqrt{-1}$, then calculate the value of $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}$.
(a) $1-i\sqrt{3}$
(b) $-1+i\sqrt{3}$
(c) $i\sqrt{3}$
(d) $-i\sqrt{3}$
Answer
597k+ views
Hint: Use the fact that $w=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}$ is a cube root of unity and thus ${{w}^{3}}=1$ . Simplify the given expression, use the laws of exponents which state that ${{a}^{b}}\times {{a}^{c}}={{a}^{b+c}}$ and ${{\left( {{a}^{b}} \right)}^{c}}={{a}^{bc}}$ and calculate the value of the expression.
Complete step-by-step solution -
We have to calculate the value of the expression $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}$.
We know that $w=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}$ is a cube root of unity. Thus, we have ${{w}^{3}}=1$.
So, we can rewrite the expression $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}$ as $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{w}^{334}}+3{{w}^{365}}$.
We know that the laws of exponents state that ${{a}^{b}}\times {{a}^{c}}={{a}^{b+c}}$ and ${{\left( {{a}^{b}} \right)}^{c}}={{a}^{bc}}$.
So, we can rewrite ${{w}^{334}}$ as ${{w}^{334}}={{w}^{333+1}}={{\left( {{w}^{3}} \right)}^{111}}\times w$.
Similarly, we can rewrite ${{w}^{365}}$ as ${{w}^{365}}={{w}^{363+2}}={{\left( {{w}^{3}} \right)}^{121}}\times {{w}^{2}}$.
Substituting these values in the expression $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{w}^{334}}+3{{w}^{365}}$, we have $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{w}^{334}}+3{{w}^{365}}=4+5\left[ {{\left( {{w}^{3}} \right)}^{111}}\times w \right]+3\left[ {{\left( {{w}^{3}} \right)}^{121}}\times {{w}^{2}} \right]$.
We know that ${{w}^{3}}=1$.
Thus, we have $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{w}^{334}}+3{{w}^{365}}=4+5\left[ {{1}^{111}}\times w \right]+3\left[ {{1}^{121}}\times {{w}^{2}} \right]=4+5w+3{{w}^{2}}$.
By rearranging the terms of the above equation, we have $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5w+3{{w}^{2}}=4+4w+4{{w}^{2}}+w-{{w}^{2}}$.
We know that the roots of the equation ${{x}^{3}}=1$ are $1,w,{{w}^{2}}$.
We also know that if $\alpha ,\beta ,\gamma $ are roots of the cubic equation of the form $a{{x}^{3}}+b{{x}^{2}}+cx+d$, then we have $\alpha +\beta +\gamma =\dfrac{-b}{a}$, $\alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{c}{a}$ and $\alpha \beta \gamma =\dfrac{-d}{a}$.
Thus, we have $1+w+{{w}^{2}}=\dfrac{0}{1}=0$.
So, we have $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5w+3{{w}^{2}}=4+4w+4{{w}^{2}}+w-{{w}^{2}}=4\left( 1+w+{{w}^{2}} \right)+w-{{w}^{2}}$ .
Thus, we have $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4\left( 1+w+{{w}^{2}} \right)+w-{{w}^{2}}=4\left( 0 \right)+w-{{w}^{2}}=w-{{w}^{2}}$.
We will now calculate the value of ${{w}^{2}}$ using the algebraic identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
As $w=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}$, we have ${{w}^{2}}={{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{2}}={{\left( \dfrac{-1}{2} \right)}^{2}}+{{\left( \dfrac{i\sqrt{3}}{2} \right)}^{2}}+2\left( \dfrac{-1}{2} \right)\left( \dfrac{i\sqrt{3}}{2} \right)$.
As $i=\sqrt{-1}$, we have ${{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}=-1$.
Thus, we have ${{w}^{2}}={{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{2}}={{\left( \dfrac{-1}{2} \right)}^{2}}+{{\left( \dfrac{i\sqrt{3}}{2} \right)}^{2}}+2\left( \dfrac{-1}{2} \right)\left( \dfrac{i\sqrt{3}}{2} \right)=\dfrac{1}{4}+\dfrac{\left( -1 \right)3}{4}-\dfrac{i\sqrt{3}}{2}=\dfrac{1-3}{4}-\dfrac{i\sqrt{3}}{2}=\dfrac{-1}{2}-\dfrac{i\sqrt{3}}{2}$.
Substituting $w=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}$ and ${{w}^{2}}=\dfrac{-1}{2}-\dfrac{i\sqrt{3}}{2}$ in the equation $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4\left( 1+w+{{w}^{2}} \right)+w-{{w}^{2}}=4\left( 0 \right)+w-{{w}^{2}}=w-{{w}^{2}}$, we have $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=w-{{w}^{2}}=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}-\left( \dfrac{-1}{2}-\dfrac{i\sqrt{3}}{2} \right)=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}+\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2}=i\sqrt{3}$ .
Hence, the value of the expression $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}$ is $i\sqrt{3}$, which is option (c).
Note: We can’t solve this question without using the fact that $1,w,{{w}^{2}}$ are roots of the equation ${{x}^{3}}=1$. We also need to use the law of exponents to simplify the powers of the exponents; otherwise, it will be very time consuming to solve this question.
Complete step-by-step solution -
We have to calculate the value of the expression $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}$.
We know that $w=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}$ is a cube root of unity. Thus, we have ${{w}^{3}}=1$.
So, we can rewrite the expression $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}$ as $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{w}^{334}}+3{{w}^{365}}$.
We know that the laws of exponents state that ${{a}^{b}}\times {{a}^{c}}={{a}^{b+c}}$ and ${{\left( {{a}^{b}} \right)}^{c}}={{a}^{bc}}$.
So, we can rewrite ${{w}^{334}}$ as ${{w}^{334}}={{w}^{333+1}}={{\left( {{w}^{3}} \right)}^{111}}\times w$.
Similarly, we can rewrite ${{w}^{365}}$ as ${{w}^{365}}={{w}^{363+2}}={{\left( {{w}^{3}} \right)}^{121}}\times {{w}^{2}}$.
Substituting these values in the expression $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{w}^{334}}+3{{w}^{365}}$, we have $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{w}^{334}}+3{{w}^{365}}=4+5\left[ {{\left( {{w}^{3}} \right)}^{111}}\times w \right]+3\left[ {{\left( {{w}^{3}} \right)}^{121}}\times {{w}^{2}} \right]$.
We know that ${{w}^{3}}=1$.
Thus, we have $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{w}^{334}}+3{{w}^{365}}=4+5\left[ {{1}^{111}}\times w \right]+3\left[ {{1}^{121}}\times {{w}^{2}} \right]=4+5w+3{{w}^{2}}$.
By rearranging the terms of the above equation, we have $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5w+3{{w}^{2}}=4+4w+4{{w}^{2}}+w-{{w}^{2}}$.
We know that the roots of the equation ${{x}^{3}}=1$ are $1,w,{{w}^{2}}$.
We also know that if $\alpha ,\beta ,\gamma $ are roots of the cubic equation of the form $a{{x}^{3}}+b{{x}^{2}}+cx+d$, then we have $\alpha +\beta +\gamma =\dfrac{-b}{a}$, $\alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{c}{a}$ and $\alpha \beta \gamma =\dfrac{-d}{a}$.
Thus, we have $1+w+{{w}^{2}}=\dfrac{0}{1}=0$.
So, we have $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5w+3{{w}^{2}}=4+4w+4{{w}^{2}}+w-{{w}^{2}}=4\left( 1+w+{{w}^{2}} \right)+w-{{w}^{2}}$ .
Thus, we have $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4\left( 1+w+{{w}^{2}} \right)+w-{{w}^{2}}=4\left( 0 \right)+w-{{w}^{2}}=w-{{w}^{2}}$.
We will now calculate the value of ${{w}^{2}}$ using the algebraic identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
As $w=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}$, we have ${{w}^{2}}={{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{2}}={{\left( \dfrac{-1}{2} \right)}^{2}}+{{\left( \dfrac{i\sqrt{3}}{2} \right)}^{2}}+2\left( \dfrac{-1}{2} \right)\left( \dfrac{i\sqrt{3}}{2} \right)$.
As $i=\sqrt{-1}$, we have ${{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}=-1$.
Thus, we have ${{w}^{2}}={{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{2}}={{\left( \dfrac{-1}{2} \right)}^{2}}+{{\left( \dfrac{i\sqrt{3}}{2} \right)}^{2}}+2\left( \dfrac{-1}{2} \right)\left( \dfrac{i\sqrt{3}}{2} \right)=\dfrac{1}{4}+\dfrac{\left( -1 \right)3}{4}-\dfrac{i\sqrt{3}}{2}=\dfrac{1-3}{4}-\dfrac{i\sqrt{3}}{2}=\dfrac{-1}{2}-\dfrac{i\sqrt{3}}{2}$.
Substituting $w=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}$ and ${{w}^{2}}=\dfrac{-1}{2}-\dfrac{i\sqrt{3}}{2}$ in the equation $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4\left( 1+w+{{w}^{2}} \right)+w-{{w}^{2}}=4\left( 0 \right)+w-{{w}^{2}}=w-{{w}^{2}}$, we have $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=w-{{w}^{2}}=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}-\left( \dfrac{-1}{2}-\dfrac{i\sqrt{3}}{2} \right)=\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}+\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2}=i\sqrt{3}$ .
Hence, the value of the expression $4+5{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( \dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}$ is $i\sqrt{3}$, which is option (c).
Note: We can’t solve this question without using the fact that $1,w,{{w}^{2}}$ are roots of the equation ${{x}^{3}}=1$. We also need to use the law of exponents to simplify the powers of the exponents; otherwise, it will be very time consuming to solve this question.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

