
If $ \int\limits_0^\pi {xf(\sin x)dx = A} \int\limits_0^{\pi /2} {f(\sin (x))dx} $ , then $ A $ is
1. $ 0 $
2. $ \pi $
3. $ \dfrac{\pi }{4} $
4. $ 2\pi $
Answer
567.3k+ views
Hint: Use the properties of definite integral to simplify LHS in terms of RHS. Use the properties in accordance with the requirements of the integral and finally compare the given integral to obtain value to find the value of A.
Complete step-by-step answer:
$ \int\limits_0^\pi {xf(\sin x)dx = A} \int\limits_0^{\pi /2} {f(\sin (x))dx} $ . . . (1)
Let $ {I_1} = \int\limits_0^\pi {xf(\sin x)dx} $ . . . (2)
We have a property,
$ \int\limits_0^a {f(x)dx = \int\limits_0^a {f(a - x)dx} } $
By using this property, we can write equation (2) as
$ {I_1} = \int\limits_0^\pi {(\pi - x)f(\sin (\pi - x))dx} $
$ {I_1} = \int\limits_0^\pi {(\pi - x)f(\sin x)dx} $ $ \left( {\because \sin (\pi - x) = \sin x} \right) $ . . . (3)
Adding (2) and (3)
$ \Rightarrow 2{I_1} = \int\limits_0^\pi {[xf(\sin x) + (\pi - x)f(\sin x)]dx} $
Taking $ f(\sin x) $ common, we get
$ 2{I_1} = \int\limits_0^\pi {[(x + \pi - x)f(\sin x)]dx} $
$ \Rightarrow 2{I_1} = \int\limits_0^\pi {\pi f(\sin x)dx} $
$ \Rightarrow 2{I_1} = \pi \int\limits_0^\pi {f(\sin x)dx} $
We have a property,
$ \int\limits_0^{2a} {f(x)dx = 2} \int\limits_0^a {f(2a - x)dx,} $ if $ f(2a - x) = f(x) $
$ \because \sin (\pi - x) = \sin x, $ we can use above property to get
$ 2{I_1} = 2\pi \int\limits_0^{\pi /2} {f(\sin x)dx.} $
$ \Rightarrow {I_1} = \pi \int\limits_0^{\pi /2} f (\sin x)dx $
Substituting this value of $ {I_1} $ in equation (1) we get
$ \pi \int\limits_0^{\pi /2} f (\sin x)dx = A\int\limits_0^{\pi /2} {f(\sin (x))dx} $
Cancelling the common terms, we get
$ A = \pi $
Therefore, from the above explanation, the correct answer is, option (2) $ \pi $
So, the correct answer is “Option 2”.
Note: You won’t be able to solve this question without using the properties of definite integral. This question is an ideal example to let you know that, using properties of definite integral to solve the question of definite integrals is useful.
Complete step-by-step answer:
$ \int\limits_0^\pi {xf(\sin x)dx = A} \int\limits_0^{\pi /2} {f(\sin (x))dx} $ . . . (1)
Let $ {I_1} = \int\limits_0^\pi {xf(\sin x)dx} $ . . . (2)
We have a property,
$ \int\limits_0^a {f(x)dx = \int\limits_0^a {f(a - x)dx} } $
By using this property, we can write equation (2) as
$ {I_1} = \int\limits_0^\pi {(\pi - x)f(\sin (\pi - x))dx} $
$ {I_1} = \int\limits_0^\pi {(\pi - x)f(\sin x)dx} $ $ \left( {\because \sin (\pi - x) = \sin x} \right) $ . . . (3)
Adding (2) and (3)
$ \Rightarrow 2{I_1} = \int\limits_0^\pi {[xf(\sin x) + (\pi - x)f(\sin x)]dx} $
Taking $ f(\sin x) $ common, we get
$ 2{I_1} = \int\limits_0^\pi {[(x + \pi - x)f(\sin x)]dx} $
$ \Rightarrow 2{I_1} = \int\limits_0^\pi {\pi f(\sin x)dx} $
$ \Rightarrow 2{I_1} = \pi \int\limits_0^\pi {f(\sin x)dx} $
We have a property,
$ \int\limits_0^{2a} {f(x)dx = 2} \int\limits_0^a {f(2a - x)dx,} $ if $ f(2a - x) = f(x) $
$ \because \sin (\pi - x) = \sin x, $ we can use above property to get
$ 2{I_1} = 2\pi \int\limits_0^{\pi /2} {f(\sin x)dx.} $
$ \Rightarrow {I_1} = \pi \int\limits_0^{\pi /2} f (\sin x)dx $
Substituting this value of $ {I_1} $ in equation (1) we get
$ \pi \int\limits_0^{\pi /2} f (\sin x)dx = A\int\limits_0^{\pi /2} {f(\sin (x))dx} $
Cancelling the common terms, we get
$ A = \pi $
Therefore, from the above explanation, the correct answer is, option (2) $ \pi $
So, the correct answer is “Option 2”.
Note: You won’t be able to solve this question without using the properties of definite integral. This question is an ideal example to let you know that, using properties of definite integral to solve the question of definite integrals is useful.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

