
If $ \int\limits_0^\pi {xf(\sin x)dx = A} \int\limits_0^{\pi /2} {f(\sin (x))dx} $ , then $ A $ is
1. $ 0 $
2. $ \pi $
3. $ \dfrac{\pi }{4} $
4. $ 2\pi $
Answer
485.4k+ views
Hint: Use the properties of definite integral to simplify LHS in terms of RHS. Use the properties in accordance with the requirements of the integral and finally compare the given integral to obtain value to find the value of A.
Complete step-by-step answer:
$ \int\limits_0^\pi {xf(\sin x)dx = A} \int\limits_0^{\pi /2} {f(\sin (x))dx} $ . . . (1)
Let $ {I_1} = \int\limits_0^\pi {xf(\sin x)dx} $ . . . (2)
We have a property,
$ \int\limits_0^a {f(x)dx = \int\limits_0^a {f(a - x)dx} } $
By using this property, we can write equation (2) as
$ {I_1} = \int\limits_0^\pi {(\pi - x)f(\sin (\pi - x))dx} $
$ {I_1} = \int\limits_0^\pi {(\pi - x)f(\sin x)dx} $ $ \left( {\because \sin (\pi - x) = \sin x} \right) $ . . . (3)
Adding (2) and (3)
$ \Rightarrow 2{I_1} = \int\limits_0^\pi {[xf(\sin x) + (\pi - x)f(\sin x)]dx} $
Taking $ f(\sin x) $ common, we get
$ 2{I_1} = \int\limits_0^\pi {[(x + \pi - x)f(\sin x)]dx} $
$ \Rightarrow 2{I_1} = \int\limits_0^\pi {\pi f(\sin x)dx} $
$ \Rightarrow 2{I_1} = \pi \int\limits_0^\pi {f(\sin x)dx} $
We have a property,
$ \int\limits_0^{2a} {f(x)dx = 2} \int\limits_0^a {f(2a - x)dx,} $ if $ f(2a - x) = f(x) $
$ \because \sin (\pi - x) = \sin x, $ we can use above property to get
$ 2{I_1} = 2\pi \int\limits_0^{\pi /2} {f(\sin x)dx.} $
$ \Rightarrow {I_1} = \pi \int\limits_0^{\pi /2} f (\sin x)dx $
Substituting this value of $ {I_1} $ in equation (1) we get
$ \pi \int\limits_0^{\pi /2} f (\sin x)dx = A\int\limits_0^{\pi /2} {f(\sin (x))dx} $
Cancelling the common terms, we get
$ A = \pi $
Therefore, from the above explanation, the correct answer is, option (2) $ \pi $
So, the correct answer is “Option 2”.
Note: You won’t be able to solve this question without using the properties of definite integral. This question is an ideal example to let you know that, using properties of definite integral to solve the question of definite integrals is useful.
Complete step-by-step answer:
$ \int\limits_0^\pi {xf(\sin x)dx = A} \int\limits_0^{\pi /2} {f(\sin (x))dx} $ . . . (1)
Let $ {I_1} = \int\limits_0^\pi {xf(\sin x)dx} $ . . . (2)
We have a property,
$ \int\limits_0^a {f(x)dx = \int\limits_0^a {f(a - x)dx} } $
By using this property, we can write equation (2) as
$ {I_1} = \int\limits_0^\pi {(\pi - x)f(\sin (\pi - x))dx} $
$ {I_1} = \int\limits_0^\pi {(\pi - x)f(\sin x)dx} $ $ \left( {\because \sin (\pi - x) = \sin x} \right) $ . . . (3)
Adding (2) and (3)
$ \Rightarrow 2{I_1} = \int\limits_0^\pi {[xf(\sin x) + (\pi - x)f(\sin x)]dx} $
Taking $ f(\sin x) $ common, we get
$ 2{I_1} = \int\limits_0^\pi {[(x + \pi - x)f(\sin x)]dx} $
$ \Rightarrow 2{I_1} = \int\limits_0^\pi {\pi f(\sin x)dx} $
$ \Rightarrow 2{I_1} = \pi \int\limits_0^\pi {f(\sin x)dx} $
We have a property,
$ \int\limits_0^{2a} {f(x)dx = 2} \int\limits_0^a {f(2a - x)dx,} $ if $ f(2a - x) = f(x) $
$ \because \sin (\pi - x) = \sin x, $ we can use above property to get
$ 2{I_1} = 2\pi \int\limits_0^{\pi /2} {f(\sin x)dx.} $
$ \Rightarrow {I_1} = \pi \int\limits_0^{\pi /2} f (\sin x)dx $
Substituting this value of $ {I_1} $ in equation (1) we get
$ \pi \int\limits_0^{\pi /2} f (\sin x)dx = A\int\limits_0^{\pi /2} {f(\sin (x))dx} $
Cancelling the common terms, we get
$ A = \pi $
Therefore, from the above explanation, the correct answer is, option (2) $ \pi $
So, the correct answer is “Option 2”.
Note: You won’t be able to solve this question without using the properties of definite integral. This question is an ideal example to let you know that, using properties of definite integral to solve the question of definite integrals is useful.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
