
If $\int{{{e}^{\sec x}}\left( \sec x\tan xf\left( x \right)+\sec x\tan x+{{\tan }^{2}}x \right).dx={{e}^{\sec x}}f\left( x \right)+c}$. Then $f\left( x \right)$ is
A.$\sec x+x\tan x+\dfrac{1}{2}$
B.$x\sec x+x\tan x+\dfrac{1}{2}$
C.$x\sec x+{{x}^{2}}\tan x+\dfrac{1}{2}$
D.$\sec x+\tan x-x+\dfrac{1}{2}$
Answer
552.3k+ views
Hint: We are given a function which consists of multiple trigonometric functions. First we will differentiate the given equation which would help us to simplify our equation and get rid of ${{e}^{\sec x}}$. Then, we will find the anti-derivative or integral of the equation thus obtained to transform ${f}'\left( x \right)$ to $f\left( x \right)$.
Complete step by step solution:
We are given the equation $\int{{{e}^{\sec x}}\left( \sec x\tan xf\left( x \right)+\sec x\tan x+{{\tan }^{2}}x \right).dx={{e}^{\sec x}}f\left( x \right)+c}$.
Differentiating both sides, we get
\[\Rightarrow \dfrac{d}{dx}\left\{ \int{{{e}^{\sec x}}\left( \sec x\tan xf\left( x \right)+\sec x\tan x+{{\tan }^{2}}x \right).dx} \right\}=\dfrac{d}{dx}\left( {{e}^{\sec x}}f\left( x \right)+c \right)\]
\[\begin{align}
& \Rightarrow {{e}^{\sec x}}\left( \sec x\tan xf\left( x \right)+\sec x\tan x+{{\tan }^{2}}x \right)={{e}^{\sec x}}{f}'\left( x \right)+{{e}^{\sec x}}\sec x\tan xf\left( x \right) \\
& \Rightarrow {{e}^{\sec x}}\sec x\tan xf\left( x \right)+{{e}^{\sec x}}\sec x\tan x+{{e}^{\sec x}}{{\tan }^{2}}x={{e}^{\sec x}}{f}'\left( x \right)+{{e}^{\sec x}}\sec x\tan xf\left( x \right) \\
\end{align}\]
Cancelling \[{{e}^{\sec x}}\sec x\tan xf\left( x \right)\] from both sides, we get
\[\begin{align}
& \Rightarrow {{e}^{\sec x}}\sec x\tan x+{{e}^{\sec x}}{{\tan }^{2}}x={{e}^{\sec x}}{f}'\left( x \right) \\
& \Rightarrow {{e}^{\sec x}}\left( \sec x\tan x+{{\tan }^{2}}x \right)={{e}^{\sec x}}{f}'\left( x \right) \\
\end{align}\]
Now, dividing both sides by ${{e}^{\sec x}}$, we get
\[\Rightarrow \sec x\tan x+{{\tan }^{2}}x={f}'\left( x \right)\]
Here, in order to find $f\left( x \right)$, we shall calculate the antiderivative or the integral of ${f}'\left( x \right)$.
\[\begin{align}
& \Rightarrow \int{{f}'\left( x \right).dx=\int{\left( \sec x\tan x+{{\tan }^{2}}x \right).dx}} \\
& \Rightarrow \int{{f}'\left( x \right).dx=\int{\sec x\tan x.dx}}+\int{{{\tan }^{2}}x.dx} \\
\end{align}\]
We shall calculate these two integrals individually and then combine them to find our final result.
Since, $\sec x=\dfrac{1}{\cos x}$ and $\tan x=\dfrac{\sin x}{\cos x}$ ,
\[\begin{align}
& \Rightarrow \int{\sec x\tan x.dx}=\int{\dfrac{1}{\cos x}.\dfrac{\sin x}{\cos x}.dx} \\
& \Rightarrow \int{\sec x\tan x.dx}=\int{\dfrac{\sin x}{{{\left( \cos x \right)}^{2}}}.dx} \\
\end{align}\]
Performing simple substitution, we see that if $t=\cos x$.
Then, $dt=-\sin x.dx$
\[\begin{align}
& \Rightarrow \int{\sec x\tan x.dx}=\int{\dfrac{1}{{{\left( t \right)}^{2}}}.-dt} \\
& \Rightarrow \int{\sec x\tan x.dx}=-\int{{{t}^{-2}}dt} \\
\end{align}\]
Using the property of integration, $\int{{{x}^{n}}.dx=}\dfrac{{{x}^{n+1}}}{n+1}+C$, we get
\[\begin{align}
& \Rightarrow \int{\sec x\tan x.dx}=-\dfrac{{{t}^{-2+1}}}{-2+1}+C \\
& \Rightarrow \int{\sec x\tan x.dx}=\dfrac{1}{t}+C \\
\end{align}\]
Substituting the value of $t=\cos x$, we get
\[\Rightarrow \int{\sec x\tan x.dx}=\dfrac{1}{\cos x}+C\]
\[\Rightarrow \int{\sec x\tan x.dx}=\sec x+C\] …………………. (1)
Also, we know that ${{\tan }^{2}}x={{\sec }^{2}}x-1$, substituting this value, we get
\[\begin{align}
& \Rightarrow \int{{{\tan }^{2}}x.dx}=\int{\left( {{\sec }^{2}}x-1 \right)}.dx \\
& \Rightarrow \int{{{\tan }^{2}}x.dx}=\int{{{\sec }^{2}}x.dx}-\int{1.dx} \\
\end{align}\]
Using the property of integration, $\int{{{\sec }^{2}}.dx=}\tan x+C$ as well as $\int{1.dx=x+C}$ , we get\[\Rightarrow \int{{{\tan }^{2}}x.dx}=\tan x+C-x+C\]
\[\Rightarrow \int{{{\tan }^{2}}x.dx}=\tan x-x+C\] ………………….. (2)
Combining (1) and (2), we get
\[\begin{align}
& \Rightarrow \int{{f}'\left( x \right).dx=\left( \sec x+C \right)}+\left( \tan x-x+C \right) \\
& \Rightarrow f\left( x \right)+C=\sec x+\tan x-x+C \\
\end{align}\]
\[\Rightarrow f\left( x \right)=\sec x+\tan x-x+C\]
We shall now compare the calculated value of f(x) with the options given in the problem and we find that it best matches option (D).
Therefore, the correct option is (D) $\sec x+\tan x-x+\dfrac{1}{2}$.
Note:
While performing indefinite integration, we must take special care about adding the constant of integration, C to our answer of integral. If we substitute the values of any point lying on a particular curve, then we can calculate the exact value of this constant of integration and hence, the general equation transforms into the equation of that particular curve only.
Complete step by step solution:
We are given the equation $\int{{{e}^{\sec x}}\left( \sec x\tan xf\left( x \right)+\sec x\tan x+{{\tan }^{2}}x \right).dx={{e}^{\sec x}}f\left( x \right)+c}$.
Differentiating both sides, we get
\[\Rightarrow \dfrac{d}{dx}\left\{ \int{{{e}^{\sec x}}\left( \sec x\tan xf\left( x \right)+\sec x\tan x+{{\tan }^{2}}x \right).dx} \right\}=\dfrac{d}{dx}\left( {{e}^{\sec x}}f\left( x \right)+c \right)\]
\[\begin{align}
& \Rightarrow {{e}^{\sec x}}\left( \sec x\tan xf\left( x \right)+\sec x\tan x+{{\tan }^{2}}x \right)={{e}^{\sec x}}{f}'\left( x \right)+{{e}^{\sec x}}\sec x\tan xf\left( x \right) \\
& \Rightarrow {{e}^{\sec x}}\sec x\tan xf\left( x \right)+{{e}^{\sec x}}\sec x\tan x+{{e}^{\sec x}}{{\tan }^{2}}x={{e}^{\sec x}}{f}'\left( x \right)+{{e}^{\sec x}}\sec x\tan xf\left( x \right) \\
\end{align}\]
Cancelling \[{{e}^{\sec x}}\sec x\tan xf\left( x \right)\] from both sides, we get
\[\begin{align}
& \Rightarrow {{e}^{\sec x}}\sec x\tan x+{{e}^{\sec x}}{{\tan }^{2}}x={{e}^{\sec x}}{f}'\left( x \right) \\
& \Rightarrow {{e}^{\sec x}}\left( \sec x\tan x+{{\tan }^{2}}x \right)={{e}^{\sec x}}{f}'\left( x \right) \\
\end{align}\]
Now, dividing both sides by ${{e}^{\sec x}}$, we get
\[\Rightarrow \sec x\tan x+{{\tan }^{2}}x={f}'\left( x \right)\]
Here, in order to find $f\left( x \right)$, we shall calculate the antiderivative or the integral of ${f}'\left( x \right)$.
\[\begin{align}
& \Rightarrow \int{{f}'\left( x \right).dx=\int{\left( \sec x\tan x+{{\tan }^{2}}x \right).dx}} \\
& \Rightarrow \int{{f}'\left( x \right).dx=\int{\sec x\tan x.dx}}+\int{{{\tan }^{2}}x.dx} \\
\end{align}\]
We shall calculate these two integrals individually and then combine them to find our final result.
Since, $\sec x=\dfrac{1}{\cos x}$ and $\tan x=\dfrac{\sin x}{\cos x}$ ,
\[\begin{align}
& \Rightarrow \int{\sec x\tan x.dx}=\int{\dfrac{1}{\cos x}.\dfrac{\sin x}{\cos x}.dx} \\
& \Rightarrow \int{\sec x\tan x.dx}=\int{\dfrac{\sin x}{{{\left( \cos x \right)}^{2}}}.dx} \\
\end{align}\]
Performing simple substitution, we see that if $t=\cos x$.
Then, $dt=-\sin x.dx$
\[\begin{align}
& \Rightarrow \int{\sec x\tan x.dx}=\int{\dfrac{1}{{{\left( t \right)}^{2}}}.-dt} \\
& \Rightarrow \int{\sec x\tan x.dx}=-\int{{{t}^{-2}}dt} \\
\end{align}\]
Using the property of integration, $\int{{{x}^{n}}.dx=}\dfrac{{{x}^{n+1}}}{n+1}+C$, we get
\[\begin{align}
& \Rightarrow \int{\sec x\tan x.dx}=-\dfrac{{{t}^{-2+1}}}{-2+1}+C \\
& \Rightarrow \int{\sec x\tan x.dx}=\dfrac{1}{t}+C \\
\end{align}\]
Substituting the value of $t=\cos x$, we get
\[\Rightarrow \int{\sec x\tan x.dx}=\dfrac{1}{\cos x}+C\]
\[\Rightarrow \int{\sec x\tan x.dx}=\sec x+C\] …………………. (1)
Also, we know that ${{\tan }^{2}}x={{\sec }^{2}}x-1$, substituting this value, we get
\[\begin{align}
& \Rightarrow \int{{{\tan }^{2}}x.dx}=\int{\left( {{\sec }^{2}}x-1 \right)}.dx \\
& \Rightarrow \int{{{\tan }^{2}}x.dx}=\int{{{\sec }^{2}}x.dx}-\int{1.dx} \\
\end{align}\]
Using the property of integration, $\int{{{\sec }^{2}}.dx=}\tan x+C$ as well as $\int{1.dx=x+C}$ , we get\[\Rightarrow \int{{{\tan }^{2}}x.dx}=\tan x+C-x+C\]
\[\Rightarrow \int{{{\tan }^{2}}x.dx}=\tan x-x+C\] ………………….. (2)
Combining (1) and (2), we get
\[\begin{align}
& \Rightarrow \int{{f}'\left( x \right).dx=\left( \sec x+C \right)}+\left( \tan x-x+C \right) \\
& \Rightarrow f\left( x \right)+C=\sec x+\tan x-x+C \\
\end{align}\]
\[\Rightarrow f\left( x \right)=\sec x+\tan x-x+C\]
We shall now compare the calculated value of f(x) with the options given in the problem and we find that it best matches option (D).
Therefore, the correct option is (D) $\sec x+\tan x-x+\dfrac{1}{2}$.
Note:
While performing indefinite integration, we must take special care about adding the constant of integration, C to our answer of integral. If we substitute the values of any point lying on a particular curve, then we can calculate the exact value of this constant of integration and hence, the general equation transforms into the equation of that particular curve only.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

