If $\int {{e^{\sec x}}\left( {\sec x\tan xf(x) + (\sec x\tan x + {{\sec }^2}x)} \right)} dx = {e^{\sec x}}f(x) + C,$ find a possible choice of f(x)
A. $\sec x - \tan x - \dfrac{1}{2}$
B. $x\sec x + \tan x + \dfrac{1}{2}$
C. $\sec x + x\tan x - \dfrac{1}{2}$
D. $\sec x + \tan x + \dfrac{1}{2}$
Answer
381.6k+ views
Hint: We need to know the formulae of integration of basic trigonometric functions to solve the given problem.
Complete step-by-step answer:
Given equation is $\int {{e^{\sec x}}\left( {\sec x\tan xf(x) + (\sec x\tan x + {{\sec }^2}x)} \right)} dx = {e^{\sec x}}f(x) + C$
Differentiating the above equation both sides with respect to x,
$${e^{\sec x}}\left( {\sec x\tan xf(x) + (\sec x\tan x + {{\sec }^2}x)} \right) = {e^{\sec x}} \cdot \sec x \cdot \tan x \cdot f(x) + {e^{\sec x}} \cdot f'(x)$$
Cancelling the common terms on both sides of the above equation, we get
$$f'(x) = {\sec ^2}x + \tan x \cdot \sec x$$
We need to find f(x), so integrating the above equation with respect to x,
$$ \Rightarrow \int {f'(x)} = \int {({{\sec }^2}x + \tan x \cdot \sec x} )dx$$
$$ \Rightarrow f(x) = \tan x + \sec x + c$$
$\therefore $Option D is the correct answer.
Note: We need the value of f(x) from the given equation, for simplifying, we differentiate the given equation to get rid of extra terms and then again integrate to get the desired result. We used these basic integration formulae
$$\int {{{\sec }^2}x\;} dx = \tan x + c$$
$$\int {\tan x \cdot \sec x} \;dx = \sec x + c$$
Complete step-by-step answer:
Given equation is $\int {{e^{\sec x}}\left( {\sec x\tan xf(x) + (\sec x\tan x + {{\sec }^2}x)} \right)} dx = {e^{\sec x}}f(x) + C$
Differentiating the above equation both sides with respect to x,
$${e^{\sec x}}\left( {\sec x\tan xf(x) + (\sec x\tan x + {{\sec }^2}x)} \right) = {e^{\sec x}} \cdot \sec x \cdot \tan x \cdot f(x) + {e^{\sec x}} \cdot f'(x)$$
Cancelling the common terms on both sides of the above equation, we get
$$f'(x) = {\sec ^2}x + \tan x \cdot \sec x$$
We need to find f(x), so integrating the above equation with respect to x,
$$ \Rightarrow \int {f'(x)} = \int {({{\sec }^2}x + \tan x \cdot \sec x} )dx$$
$$ \Rightarrow f(x) = \tan x + \sec x + c$$
$\therefore $Option D is the correct answer.
Note: We need the value of f(x) from the given equation, for simplifying, we differentiate the given equation to get rid of extra terms and then again integrate to get the desired result. We used these basic integration formulae
$$\int {{{\sec }^2}x\;} dx = \tan x + c$$
$$\int {\tan x \cdot \sec x} \;dx = \sec x + c$$
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is the past tense of read class 10 english CBSE

What is pollution? How many types of pollution? Define it

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

How many crores make 10 million class 7 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE
