Courses
Courses for Kids
Free study material
Free LIVE classes
More LIVE
Join Vedantu’s FREE Mastercalss

# If $\int {{e^{\sec x}}\left( {\sec x\tan xf(x) + (\sec x\tan x + {{\sec }^2}x)} \right)} dx = {e^{\sec x}}f(x) + C,$ find a possible choice of f(x)A. $\sec x - \tan x - \dfrac{1}{2}$B. $x\sec x + \tan x + \dfrac{1}{2}$C. $\sec x + x\tan x - \dfrac{1}{2}$D. $\sec x + \tan x + \dfrac{1}{2}$ Verified
360.6k+ views
Hint: We need to know the formulae of integration of basic trigonometric functions to solve the given problem.

Given equation is $\int {{e^{\sec x}}\left( {\sec x\tan xf(x) + (\sec x\tan x + {{\sec }^2}x)} \right)} dx = {e^{\sec x}}f(x) + C$
Differentiating the above equation both sides with respect to x,
$${e^{\sec x}}\left( {\sec x\tan xf(x) + (\sec x\tan x + {{\sec }^2}x)} \right) = {e^{\sec x}} \cdot \sec x \cdot \tan x \cdot f(x) + {e^{\sec x}} \cdot f'(x)$$
Cancelling the common terms on both sides of the above equation, we get
$$f'(x) = {\sec ^2}x + \tan x \cdot \sec x$$
We need to find f(x), so integrating the above equation with respect to x,
$$\Rightarrow \int {f'(x)} = \int {({{\sec }^2}x + \tan x \cdot \sec x} )dx$$
$$\Rightarrow f(x) = \tan x + \sec x + c$$
$\therefore$Option D is the correct answer.

Note: We need the value of f(x) from the given equation, for simplifying, we differentiate the given equation to get rid of extra terms and then again integrate to get the desired result. We used these basic integration formulae
$$\int {{{\sec }^2}x\;} dx = \tan x + c$$
$$\int {\tan x \cdot \sec x} \;dx = \sec x + c$$
Last updated date: 27th Sep 2023
Total views: 360.6k
Views today: 7.60k