Answer
Verified
429k+ views
Hint: The depression in the freezing point of a solution upon the addition of a solute can be given by
\[\Delta {T_f} = {K_f} \cdot m\]
Here, m is the molality of the solute and ${K_f}$ is the molal depression constant
Complete step by step solution:
An antifreeze solution is a solution which contains a material which lowers the freezing point of the solvent. It can be used in the radiators of automobiles in order to prevent the damage after the freezing of the solution.
- So, here we will consider glycerol and methanol as solute and antifreeze substances.
- Now, the depression in the freezing point of a solution upon the addition of a solute can be given by
\[\Delta {T_f} = {K_f} \cdot m{\text{ }}....(1)\]
Where ${K_f}$ is the molal depression constant and m is the molality of the solute.
Now, we know that molality of a solute can be given by the number of moles of solute dissolved in one kilogram of a solvent. As we put the value of molality in equation (1), we get
\[\Delta {T_f} = {K_f} \cdot \dfrac{{{\text{Moles of solute}}}}{{{\text{Weight of solvent}}}}{\text{ }}....{\text{(2)}}\]
We can write that number of moles of solute = $\dfrac{{{\text{Weight of solute}}}}{{{\text{Molecular weight of solute}}}}$
Putting the value of the number of moles of solute in equation (2), we get
\[\Delta {T_f} = {K_f} \cdot \dfrac{{{\text{Weight of solute}}}}{{{\text{Molecular weight of solute}} \times {\text{Weight of solute}}}}{\text{ }}........{\text{(3)}}\]
Now, we are given that both methanol and glycerol have the same antifreezing activity and they are used in the same amounts. So, only the change will be the molecular weight in equation (3). Let’s find the molecular weight of both of them in order to compare their anti-freezing activity.
- Molecular weight of Methanol ($C{H_3}OH$) = Atomic weight of C + Atomic weight of O + 4(Atomic weight of H)
Molecular weight of Methanol = $12 + 16 + 4(1) =$ $32$ $gmmo{l^{ - 1}}$
Molecular weight of Glycerol (${C_3}{H_9}{O_3}$) = 3(Atomic weight of C) + 9(Atomic weight of H) + 3(Atomic weight of O)
Molecular weight of Glycerol = $3(12) + 9(1) + 3(16) =$ $36+9+48 =$ $93$ $gmmo{l^{ - 1}}$
- Now, we can say that methanol has lower molecular weight than glycerol and thus the value of $\Delta {T_f}$ will be more for methanol than glycerol.
- Thus, we can say that we will be able to decrease the freezing point of water with less mass of methanol. The mass of the glycerol required will be more than methanol. So, we can say that methanol will be cheaper than glycerol.
Therefore, the correct answer is (B).
Note: Remember that the property that the antifreeze compound should possess is that it should be non-volatile. It decreases the vapour pressure of the solution and so the freezing point of the solution decreases.
\[\Delta {T_f} = {K_f} \cdot m\]
Here, m is the molality of the solute and ${K_f}$ is the molal depression constant
Complete step by step solution:
An antifreeze solution is a solution which contains a material which lowers the freezing point of the solvent. It can be used in the radiators of automobiles in order to prevent the damage after the freezing of the solution.
- So, here we will consider glycerol and methanol as solute and antifreeze substances.
- Now, the depression in the freezing point of a solution upon the addition of a solute can be given by
\[\Delta {T_f} = {K_f} \cdot m{\text{ }}....(1)\]
Where ${K_f}$ is the molal depression constant and m is the molality of the solute.
Now, we know that molality of a solute can be given by the number of moles of solute dissolved in one kilogram of a solvent. As we put the value of molality in equation (1), we get
\[\Delta {T_f} = {K_f} \cdot \dfrac{{{\text{Moles of solute}}}}{{{\text{Weight of solvent}}}}{\text{ }}....{\text{(2)}}\]
We can write that number of moles of solute = $\dfrac{{{\text{Weight of solute}}}}{{{\text{Molecular weight of solute}}}}$
Putting the value of the number of moles of solute in equation (2), we get
\[\Delta {T_f} = {K_f} \cdot \dfrac{{{\text{Weight of solute}}}}{{{\text{Molecular weight of solute}} \times {\text{Weight of solute}}}}{\text{ }}........{\text{(3)}}\]
Now, we are given that both methanol and glycerol have the same antifreezing activity and they are used in the same amounts. So, only the change will be the molecular weight in equation (3). Let’s find the molecular weight of both of them in order to compare their anti-freezing activity.
- Molecular weight of Methanol ($C{H_3}OH$) = Atomic weight of C + Atomic weight of O + 4(Atomic weight of H)
Molecular weight of Methanol = $12 + 16 + 4(1) =$ $32$ $gmmo{l^{ - 1}}$
Molecular weight of Glycerol (${C_3}{H_9}{O_3}$) = 3(Atomic weight of C) + 9(Atomic weight of H) + 3(Atomic weight of O)
Molecular weight of Glycerol = $3(12) + 9(1) + 3(16) =$ $36+9+48 =$ $93$ $gmmo{l^{ - 1}}$
- Now, we can say that methanol has lower molecular weight than glycerol and thus the value of $\Delta {T_f}$ will be more for methanol than glycerol.
- Thus, we can say that we will be able to decrease the freezing point of water with less mass of methanol. The mass of the glycerol required will be more than methanol. So, we can say that methanol will be cheaper than glycerol.
Therefore, the correct answer is (B).
Note: Remember that the property that the antifreeze compound should possess is that it should be non-volatile. It decreases the vapour pressure of the solution and so the freezing point of the solution decreases.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
10 examples of evaporation in daily life with explanations