
If \[g\left( x \right)={{x}^{4}}-{{x}^{3}}+{{x}^{2}}+3x-5\], then find \[g\left( 2+3i \right)\].
Answer
515.7k+ views
Hint: We will first find all the values like \[{{\left( 2+3i \right)}^{4}},{{\left( 2+3i \right)}^{3}},{{\left( 2+3i \right)}^{2}},3\left( 2+3i \right)\] and then substitute them in the function \[g\left( x \right)\] and get the calculated value. That would be our final answer.
Complete step-by-step answer:
Let, \[x=2+3i\]. Let us calculate \[{{x}^{2}}\] first.
Therefore, \[{{x}^{2}}={{\left( 2+3i \right)}^{2}}\].
Expanding using the formula, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\], we get,
\[\begin{align}
& {{x}^{2}}={{2}^{2}}+2\times 2\times 3i+{{\left( 3i \right)}^{2}} \\
& {{x}^{2}}=4+12i+9{{i}^{2}} \\
\end{align}\]
As, \[i=\sqrt{-1}\], we get \[{{i}^{2}}=-1\].
Thus, \[{{x}^{2}}=4+12i+9\left( -1 \right)\]
\[{{x}^{2}}=4+12i-9\]
\[{{x}^{2}}=-5+12i-(i)\]
Now, let us calculate, \[{{x}^{3}}\].
\[{{x}^{3}}={{\left( 2+3i \right)}^{3}}\]
Thus, \[{{x}^{3}}={{\left( 2+3i \right)}^{2}}\left( 2+3i \right)\]
We know, \[{{\left( 2+3i \right)}^{2}}=\left( -5+12i \right)\]
Thus, \[{{x}^{3}}=\left( -5+12i \right)\left( 2+3i \right)\]
Multiplying we get,
\[\begin{align}
& {{x}^{3}}=\left( -5\times 2 \right)+\left( -5\times 3i \right)+\left( 12i\times 2 \right)+\left( 12i\times 3i \right) \\
& {{x}^{3}}=-10-15i+24i+36{{i}^{2}} \\
& {{x}^{3}}=-10+9i+36{{i}^{2}} \\
\end{align}\]
Putting, \[{{i}^{2}}=-1\] we get,
\[\begin{align}
& {{x}^{3}}=-10+9i+36\left( -1 \right) \\
& {{x}^{3}}=-10+9i-36 \\
& {{x}^{3}}=\left( -46+9i \right)-(ii) \\
\end{align}\]
Now let us calculate \[{{x}^{4}}\].
We know, \[{{x}^{2}}=-5+12i\] from (i).
Squaring on both sides we get,
\[{{\left( {{x}^{2}} \right)}^{2}}={{\left( -5+12i \right)}^{2}}\]
Expanding using, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\], we get,
\[\begin{align}
& {{x}^{4}}={{\left( -5 \right)}^{2}}+2\times \left( -5 \right)\left( 12i \right)+{{\left( 12i \right)}^{2}} \\
& {{x}^{4}}=25-120i+144{{i}^{2}} \\
\end{align}\]
Putting \[{{i}^{2}}=-1\], we get,
\[\begin{align}
& {{x}^{4}}=25-120i+144\left( -1 \right) \\
& {{x}^{4}}=25-120i-144 \\
& {{x}^{4}}=-119-120i-(iii) \\
\end{align}\]
Now that we know all the values in \[g\left( x \right)\], let’s put them in.
\[g\left( x \right)={{x}^{4}}-{{x}^{3}}+{{x}^{2}}+3x-5\]
\[\Rightarrow g\left( 2+3i \right)=\left( -119-120i \right)-\left( -46+9i \right)+\left( -5+12i \right)+3\left( 2+3i \right)-5\]
Multiplying and simplifying,
\[\begin{align}
& \Rightarrow g\left( 2+3i \right)=-119+120i+46-9i-5+12i+6+9i-5 \\
& \Rightarrow g\left( 2+3i \right)=-77-108i \\
\end{align}\]
Thus, \[g\left( 2+3i \right)=-77-108i\].
Note: Be careful solving these types of huge equations. Do not put the complex number directly into the equation and start expanding there itself. This will just reduce your steps but it invites a lot of confusion. The equation becomes really huge and you will commit a mistake by messing up the signs or missing some terms in the middle. So a better practice is that we calculate every term separately and then put all the terms in the equation and calculate.
Complete step-by-step answer:
Let, \[x=2+3i\]. Let us calculate \[{{x}^{2}}\] first.
Therefore, \[{{x}^{2}}={{\left( 2+3i \right)}^{2}}\].
Expanding using the formula, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\], we get,
\[\begin{align}
& {{x}^{2}}={{2}^{2}}+2\times 2\times 3i+{{\left( 3i \right)}^{2}} \\
& {{x}^{2}}=4+12i+9{{i}^{2}} \\
\end{align}\]
As, \[i=\sqrt{-1}\], we get \[{{i}^{2}}=-1\].
Thus, \[{{x}^{2}}=4+12i+9\left( -1 \right)\]
\[{{x}^{2}}=4+12i-9\]
\[{{x}^{2}}=-5+12i-(i)\]
Now, let us calculate, \[{{x}^{3}}\].
\[{{x}^{3}}={{\left( 2+3i \right)}^{3}}\]
Thus, \[{{x}^{3}}={{\left( 2+3i \right)}^{2}}\left( 2+3i \right)\]
We know, \[{{\left( 2+3i \right)}^{2}}=\left( -5+12i \right)\]
Thus, \[{{x}^{3}}=\left( -5+12i \right)\left( 2+3i \right)\]
Multiplying we get,
\[\begin{align}
& {{x}^{3}}=\left( -5\times 2 \right)+\left( -5\times 3i \right)+\left( 12i\times 2 \right)+\left( 12i\times 3i \right) \\
& {{x}^{3}}=-10-15i+24i+36{{i}^{2}} \\
& {{x}^{3}}=-10+9i+36{{i}^{2}} \\
\end{align}\]
Putting, \[{{i}^{2}}=-1\] we get,
\[\begin{align}
& {{x}^{3}}=-10+9i+36\left( -1 \right) \\
& {{x}^{3}}=-10+9i-36 \\
& {{x}^{3}}=\left( -46+9i \right)-(ii) \\
\end{align}\]
Now let us calculate \[{{x}^{4}}\].
We know, \[{{x}^{2}}=-5+12i\] from (i).
Squaring on both sides we get,
\[{{\left( {{x}^{2}} \right)}^{2}}={{\left( -5+12i \right)}^{2}}\]
Expanding using, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\], we get,
\[\begin{align}
& {{x}^{4}}={{\left( -5 \right)}^{2}}+2\times \left( -5 \right)\left( 12i \right)+{{\left( 12i \right)}^{2}} \\
& {{x}^{4}}=25-120i+144{{i}^{2}} \\
\end{align}\]
Putting \[{{i}^{2}}=-1\], we get,
\[\begin{align}
& {{x}^{4}}=25-120i+144\left( -1 \right) \\
& {{x}^{4}}=25-120i-144 \\
& {{x}^{4}}=-119-120i-(iii) \\
\end{align}\]
Now that we know all the values in \[g\left( x \right)\], let’s put them in.
\[g\left( x \right)={{x}^{4}}-{{x}^{3}}+{{x}^{2}}+3x-5\]
\[\Rightarrow g\left( 2+3i \right)=\left( -119-120i \right)-\left( -46+9i \right)+\left( -5+12i \right)+3\left( 2+3i \right)-5\]
Multiplying and simplifying,
\[\begin{align}
& \Rightarrow g\left( 2+3i \right)=-119+120i+46-9i-5+12i+6+9i-5 \\
& \Rightarrow g\left( 2+3i \right)=-77-108i \\
\end{align}\]
Thus, \[g\left( 2+3i \right)=-77-108i\].
Note: Be careful solving these types of huge equations. Do not put the complex number directly into the equation and start expanding there itself. This will just reduce your steps but it invites a lot of confusion. The equation becomes really huge and you will commit a mistake by messing up the signs or missing some terms in the middle. So a better practice is that we calculate every term separately and then put all the terms in the equation and calculate.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write a short note on Franklands reaction class 12 chemistry CBSE
