
If \[g\left( x \right)={{x}^{4}}-{{x}^{3}}+{{x}^{2}}+3x-5\], then find \[g\left( 2+3i \right)\].
Answer
610.5k+ views
Hint: We will first find all the values like \[{{\left( 2+3i \right)}^{4}},{{\left( 2+3i \right)}^{3}},{{\left( 2+3i \right)}^{2}},3\left( 2+3i \right)\] and then substitute them in the function \[g\left( x \right)\] and get the calculated value. That would be our final answer.
Complete step-by-step answer:
Let, \[x=2+3i\]. Let us calculate \[{{x}^{2}}\] first.
Therefore, \[{{x}^{2}}={{\left( 2+3i \right)}^{2}}\].
Expanding using the formula, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\], we get,
\[\begin{align}
& {{x}^{2}}={{2}^{2}}+2\times 2\times 3i+{{\left( 3i \right)}^{2}} \\
& {{x}^{2}}=4+12i+9{{i}^{2}} \\
\end{align}\]
As, \[i=\sqrt{-1}\], we get \[{{i}^{2}}=-1\].
Thus, \[{{x}^{2}}=4+12i+9\left( -1 \right)\]
\[{{x}^{2}}=4+12i-9\]
\[{{x}^{2}}=-5+12i-(i)\]
Now, let us calculate, \[{{x}^{3}}\].
\[{{x}^{3}}={{\left( 2+3i \right)}^{3}}\]
Thus, \[{{x}^{3}}={{\left( 2+3i \right)}^{2}}\left( 2+3i \right)\]
We know, \[{{\left( 2+3i \right)}^{2}}=\left( -5+12i \right)\]
Thus, \[{{x}^{3}}=\left( -5+12i \right)\left( 2+3i \right)\]
Multiplying we get,
\[\begin{align}
& {{x}^{3}}=\left( -5\times 2 \right)+\left( -5\times 3i \right)+\left( 12i\times 2 \right)+\left( 12i\times 3i \right) \\
& {{x}^{3}}=-10-15i+24i+36{{i}^{2}} \\
& {{x}^{3}}=-10+9i+36{{i}^{2}} \\
\end{align}\]
Putting, \[{{i}^{2}}=-1\] we get,
\[\begin{align}
& {{x}^{3}}=-10+9i+36\left( -1 \right) \\
& {{x}^{3}}=-10+9i-36 \\
& {{x}^{3}}=\left( -46+9i \right)-(ii) \\
\end{align}\]
Now let us calculate \[{{x}^{4}}\].
We know, \[{{x}^{2}}=-5+12i\] from (i).
Squaring on both sides we get,
\[{{\left( {{x}^{2}} \right)}^{2}}={{\left( -5+12i \right)}^{2}}\]
Expanding using, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\], we get,
\[\begin{align}
& {{x}^{4}}={{\left( -5 \right)}^{2}}+2\times \left( -5 \right)\left( 12i \right)+{{\left( 12i \right)}^{2}} \\
& {{x}^{4}}=25-120i+144{{i}^{2}} \\
\end{align}\]
Putting \[{{i}^{2}}=-1\], we get,
\[\begin{align}
& {{x}^{4}}=25-120i+144\left( -1 \right) \\
& {{x}^{4}}=25-120i-144 \\
& {{x}^{4}}=-119-120i-(iii) \\
\end{align}\]
Now that we know all the values in \[g\left( x \right)\], let’s put them in.
\[g\left( x \right)={{x}^{4}}-{{x}^{3}}+{{x}^{2}}+3x-5\]
\[\Rightarrow g\left( 2+3i \right)=\left( -119-120i \right)-\left( -46+9i \right)+\left( -5+12i \right)+3\left( 2+3i \right)-5\]
Multiplying and simplifying,
\[\begin{align}
& \Rightarrow g\left( 2+3i \right)=-119+120i+46-9i-5+12i+6+9i-5 \\
& \Rightarrow g\left( 2+3i \right)=-77-108i \\
\end{align}\]
Thus, \[g\left( 2+3i \right)=-77-108i\].
Note: Be careful solving these types of huge equations. Do not put the complex number directly into the equation and start expanding there itself. This will just reduce your steps but it invites a lot of confusion. The equation becomes really huge and you will commit a mistake by messing up the signs or missing some terms in the middle. So a better practice is that we calculate every term separately and then put all the terms in the equation and calculate.
Complete step-by-step answer:
Let, \[x=2+3i\]. Let us calculate \[{{x}^{2}}\] first.
Therefore, \[{{x}^{2}}={{\left( 2+3i \right)}^{2}}\].
Expanding using the formula, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\], we get,
\[\begin{align}
& {{x}^{2}}={{2}^{2}}+2\times 2\times 3i+{{\left( 3i \right)}^{2}} \\
& {{x}^{2}}=4+12i+9{{i}^{2}} \\
\end{align}\]
As, \[i=\sqrt{-1}\], we get \[{{i}^{2}}=-1\].
Thus, \[{{x}^{2}}=4+12i+9\left( -1 \right)\]
\[{{x}^{2}}=4+12i-9\]
\[{{x}^{2}}=-5+12i-(i)\]
Now, let us calculate, \[{{x}^{3}}\].
\[{{x}^{3}}={{\left( 2+3i \right)}^{3}}\]
Thus, \[{{x}^{3}}={{\left( 2+3i \right)}^{2}}\left( 2+3i \right)\]
We know, \[{{\left( 2+3i \right)}^{2}}=\left( -5+12i \right)\]
Thus, \[{{x}^{3}}=\left( -5+12i \right)\left( 2+3i \right)\]
Multiplying we get,
\[\begin{align}
& {{x}^{3}}=\left( -5\times 2 \right)+\left( -5\times 3i \right)+\left( 12i\times 2 \right)+\left( 12i\times 3i \right) \\
& {{x}^{3}}=-10-15i+24i+36{{i}^{2}} \\
& {{x}^{3}}=-10+9i+36{{i}^{2}} \\
\end{align}\]
Putting, \[{{i}^{2}}=-1\] we get,
\[\begin{align}
& {{x}^{3}}=-10+9i+36\left( -1 \right) \\
& {{x}^{3}}=-10+9i-36 \\
& {{x}^{3}}=\left( -46+9i \right)-(ii) \\
\end{align}\]
Now let us calculate \[{{x}^{4}}\].
We know, \[{{x}^{2}}=-5+12i\] from (i).
Squaring on both sides we get,
\[{{\left( {{x}^{2}} \right)}^{2}}={{\left( -5+12i \right)}^{2}}\]
Expanding using, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\], we get,
\[\begin{align}
& {{x}^{4}}={{\left( -5 \right)}^{2}}+2\times \left( -5 \right)\left( 12i \right)+{{\left( 12i \right)}^{2}} \\
& {{x}^{4}}=25-120i+144{{i}^{2}} \\
\end{align}\]
Putting \[{{i}^{2}}=-1\], we get,
\[\begin{align}
& {{x}^{4}}=25-120i+144\left( -1 \right) \\
& {{x}^{4}}=25-120i-144 \\
& {{x}^{4}}=-119-120i-(iii) \\
\end{align}\]
Now that we know all the values in \[g\left( x \right)\], let’s put them in.
\[g\left( x \right)={{x}^{4}}-{{x}^{3}}+{{x}^{2}}+3x-5\]
\[\Rightarrow g\left( 2+3i \right)=\left( -119-120i \right)-\left( -46+9i \right)+\left( -5+12i \right)+3\left( 2+3i \right)-5\]
Multiplying and simplifying,
\[\begin{align}
& \Rightarrow g\left( 2+3i \right)=-119+120i+46-9i-5+12i+6+9i-5 \\
& \Rightarrow g\left( 2+3i \right)=-77-108i \\
\end{align}\]
Thus, \[g\left( 2+3i \right)=-77-108i\].
Note: Be careful solving these types of huge equations. Do not put the complex number directly into the equation and start expanding there itself. This will just reduce your steps but it invites a lot of confusion. The equation becomes really huge and you will commit a mistake by messing up the signs or missing some terms in the middle. So a better practice is that we calculate every term separately and then put all the terms in the equation and calculate.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

