
If \[g\left( x \right)={{x}^{4}}-{{x}^{3}}+{{x}^{2}}+3x-5\], then find \[g\left( 2+3i \right)\].
Answer
599.1k+ views
Hint: We will first find all the values like \[{{\left( 2+3i \right)}^{4}},{{\left( 2+3i \right)}^{3}},{{\left( 2+3i \right)}^{2}},3\left( 2+3i \right)\] and then substitute them in the function \[g\left( x \right)\] and get the calculated value. That would be our final answer.
Complete step-by-step answer:
Let, \[x=2+3i\]. Let us calculate \[{{x}^{2}}\] first.
Therefore, \[{{x}^{2}}={{\left( 2+3i \right)}^{2}}\].
Expanding using the formula, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\], we get,
\[\begin{align}
& {{x}^{2}}={{2}^{2}}+2\times 2\times 3i+{{\left( 3i \right)}^{2}} \\
& {{x}^{2}}=4+12i+9{{i}^{2}} \\
\end{align}\]
As, \[i=\sqrt{-1}\], we get \[{{i}^{2}}=-1\].
Thus, \[{{x}^{2}}=4+12i+9\left( -1 \right)\]
\[{{x}^{2}}=4+12i-9\]
\[{{x}^{2}}=-5+12i-(i)\]
Now, let us calculate, \[{{x}^{3}}\].
\[{{x}^{3}}={{\left( 2+3i \right)}^{3}}\]
Thus, \[{{x}^{3}}={{\left( 2+3i \right)}^{2}}\left( 2+3i \right)\]
We know, \[{{\left( 2+3i \right)}^{2}}=\left( -5+12i \right)\]
Thus, \[{{x}^{3}}=\left( -5+12i \right)\left( 2+3i \right)\]
Multiplying we get,
\[\begin{align}
& {{x}^{3}}=\left( -5\times 2 \right)+\left( -5\times 3i \right)+\left( 12i\times 2 \right)+\left( 12i\times 3i \right) \\
& {{x}^{3}}=-10-15i+24i+36{{i}^{2}} \\
& {{x}^{3}}=-10+9i+36{{i}^{2}} \\
\end{align}\]
Putting, \[{{i}^{2}}=-1\] we get,
\[\begin{align}
& {{x}^{3}}=-10+9i+36\left( -1 \right) \\
& {{x}^{3}}=-10+9i-36 \\
& {{x}^{3}}=\left( -46+9i \right)-(ii) \\
\end{align}\]
Now let us calculate \[{{x}^{4}}\].
We know, \[{{x}^{2}}=-5+12i\] from (i).
Squaring on both sides we get,
\[{{\left( {{x}^{2}} \right)}^{2}}={{\left( -5+12i \right)}^{2}}\]
Expanding using, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\], we get,
\[\begin{align}
& {{x}^{4}}={{\left( -5 \right)}^{2}}+2\times \left( -5 \right)\left( 12i \right)+{{\left( 12i \right)}^{2}} \\
& {{x}^{4}}=25-120i+144{{i}^{2}} \\
\end{align}\]
Putting \[{{i}^{2}}=-1\], we get,
\[\begin{align}
& {{x}^{4}}=25-120i+144\left( -1 \right) \\
& {{x}^{4}}=25-120i-144 \\
& {{x}^{4}}=-119-120i-(iii) \\
\end{align}\]
Now that we know all the values in \[g\left( x \right)\], let’s put them in.
\[g\left( x \right)={{x}^{4}}-{{x}^{3}}+{{x}^{2}}+3x-5\]
\[\Rightarrow g\left( 2+3i \right)=\left( -119-120i \right)-\left( -46+9i \right)+\left( -5+12i \right)+3\left( 2+3i \right)-5\]
Multiplying and simplifying,
\[\begin{align}
& \Rightarrow g\left( 2+3i \right)=-119+120i+46-9i-5+12i+6+9i-5 \\
& \Rightarrow g\left( 2+3i \right)=-77-108i \\
\end{align}\]
Thus, \[g\left( 2+3i \right)=-77-108i\].
Note: Be careful solving these types of huge equations. Do not put the complex number directly into the equation and start expanding there itself. This will just reduce your steps but it invites a lot of confusion. The equation becomes really huge and you will commit a mistake by messing up the signs or missing some terms in the middle. So a better practice is that we calculate every term separately and then put all the terms in the equation and calculate.
Complete step-by-step answer:
Let, \[x=2+3i\]. Let us calculate \[{{x}^{2}}\] first.
Therefore, \[{{x}^{2}}={{\left( 2+3i \right)}^{2}}\].
Expanding using the formula, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\], we get,
\[\begin{align}
& {{x}^{2}}={{2}^{2}}+2\times 2\times 3i+{{\left( 3i \right)}^{2}} \\
& {{x}^{2}}=4+12i+9{{i}^{2}} \\
\end{align}\]
As, \[i=\sqrt{-1}\], we get \[{{i}^{2}}=-1\].
Thus, \[{{x}^{2}}=4+12i+9\left( -1 \right)\]
\[{{x}^{2}}=4+12i-9\]
\[{{x}^{2}}=-5+12i-(i)\]
Now, let us calculate, \[{{x}^{3}}\].
\[{{x}^{3}}={{\left( 2+3i \right)}^{3}}\]
Thus, \[{{x}^{3}}={{\left( 2+3i \right)}^{2}}\left( 2+3i \right)\]
We know, \[{{\left( 2+3i \right)}^{2}}=\left( -5+12i \right)\]
Thus, \[{{x}^{3}}=\left( -5+12i \right)\left( 2+3i \right)\]
Multiplying we get,
\[\begin{align}
& {{x}^{3}}=\left( -5\times 2 \right)+\left( -5\times 3i \right)+\left( 12i\times 2 \right)+\left( 12i\times 3i \right) \\
& {{x}^{3}}=-10-15i+24i+36{{i}^{2}} \\
& {{x}^{3}}=-10+9i+36{{i}^{2}} \\
\end{align}\]
Putting, \[{{i}^{2}}=-1\] we get,
\[\begin{align}
& {{x}^{3}}=-10+9i+36\left( -1 \right) \\
& {{x}^{3}}=-10+9i-36 \\
& {{x}^{3}}=\left( -46+9i \right)-(ii) \\
\end{align}\]
Now let us calculate \[{{x}^{4}}\].
We know, \[{{x}^{2}}=-5+12i\] from (i).
Squaring on both sides we get,
\[{{\left( {{x}^{2}} \right)}^{2}}={{\left( -5+12i \right)}^{2}}\]
Expanding using, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\], we get,
\[\begin{align}
& {{x}^{4}}={{\left( -5 \right)}^{2}}+2\times \left( -5 \right)\left( 12i \right)+{{\left( 12i \right)}^{2}} \\
& {{x}^{4}}=25-120i+144{{i}^{2}} \\
\end{align}\]
Putting \[{{i}^{2}}=-1\], we get,
\[\begin{align}
& {{x}^{4}}=25-120i+144\left( -1 \right) \\
& {{x}^{4}}=25-120i-144 \\
& {{x}^{4}}=-119-120i-(iii) \\
\end{align}\]
Now that we know all the values in \[g\left( x \right)\], let’s put them in.
\[g\left( x \right)={{x}^{4}}-{{x}^{3}}+{{x}^{2}}+3x-5\]
\[\Rightarrow g\left( 2+3i \right)=\left( -119-120i \right)-\left( -46+9i \right)+\left( -5+12i \right)+3\left( 2+3i \right)-5\]
Multiplying and simplifying,
\[\begin{align}
& \Rightarrow g\left( 2+3i \right)=-119+120i+46-9i-5+12i+6+9i-5 \\
& \Rightarrow g\left( 2+3i \right)=-77-108i \\
\end{align}\]
Thus, \[g\left( 2+3i \right)=-77-108i\].
Note: Be careful solving these types of huge equations. Do not put the complex number directly into the equation and start expanding there itself. This will just reduce your steps but it invites a lot of confusion. The equation becomes really huge and you will commit a mistake by messing up the signs or missing some terms in the middle. So a better practice is that we calculate every term separately and then put all the terms in the equation and calculate.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

