Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

If given a trigonometric equation$\sqrt 3 \tan \theta = 3\sin \theta $, find the value of ${\sin ^2}\theta - {\cos ^2}\theta $

Answer
VerifiedVerified
598.2k+ views
Hint: - Use the trigonometric identities and Pythagoras theorem.

Given:$\sqrt 3 \tan \theta = 3\sin \theta $
$
   \Rightarrow \tan \theta = \dfrac{3}{{\sqrt 3 }}\sin \theta \\
   \Rightarrow \tan \theta = \sqrt 3 \sin \theta \\
   \Rightarrow \dfrac{{\tan \theta }}{{\sin \theta }} = \sqrt 3 \\
   \Rightarrow \cos \theta = \dfrac{1}{{\sqrt 3 }} \\
   \Rightarrow \cos \theta = \dfrac{{Adjacent{\text{ }}side}}{{Hypotenuse}} = \dfrac{B}{H} = \dfrac{1}{{\sqrt 3 }} \\
 $
seo images

From the above figure for the Right angled triangle by using Pythagoras Theorem,
$
  {H^2} = {P^2} + {B^2} \\
  {\left( {\sqrt 3 } \right)^2} = {P^2} + {1^2} \\
  {P^2} = 3 - 1 \\
  {P^2} = 2 \\
  P = \sqrt 2 \\
$
Now, ${\sin ^2}\theta - {\cos ^2}\theta = {\left( {\dfrac{P}{H}} \right)^2} - {\left( {\dfrac{B}{H}} \right)^2}$
$
   = {\left( {\dfrac{{\sqrt 2 }}{{\sqrt 3 }}} \right)^2} - {\left( {\dfrac{1}{{\sqrt 3 }}} \right)^2} \\
   = \dfrac{2}{3} - \dfrac{1}{3} \\
   = \dfrac{1}{3} \\
$
Note: The above question can be solved by using trigonometric identities, but here it is done by visualizing the terms in the form of sides of the right angled triangle, thus making the problem easier to solve.