
If given a trigonometric equation$\sqrt 3 \tan \theta = 3\sin \theta $, find the value of ${\sin ^2}\theta - {\cos ^2}\theta $
Answer
624k+ views
Hint: - Use the trigonometric identities and Pythagoras theorem.
Given:$\sqrt 3 \tan \theta = 3\sin \theta $
$
\Rightarrow \tan \theta = \dfrac{3}{{\sqrt 3 }}\sin \theta \\
\Rightarrow \tan \theta = \sqrt 3 \sin \theta \\
\Rightarrow \dfrac{{\tan \theta }}{{\sin \theta }} = \sqrt 3 \\
\Rightarrow \cos \theta = \dfrac{1}{{\sqrt 3 }} \\
\Rightarrow \cos \theta = \dfrac{{Adjacent{\text{ }}side}}{{Hypotenuse}} = \dfrac{B}{H} = \dfrac{1}{{\sqrt 3 }} \\
$
From the above figure for the Right angled triangle by using Pythagoras Theorem,
$
{H^2} = {P^2} + {B^2} \\
{\left( {\sqrt 3 } \right)^2} = {P^2} + {1^2} \\
{P^2} = 3 - 1 \\
{P^2} = 2 \\
P = \sqrt 2 \\
$
Now, ${\sin ^2}\theta - {\cos ^2}\theta = {\left( {\dfrac{P}{H}} \right)^2} - {\left( {\dfrac{B}{H}} \right)^2}$
$
= {\left( {\dfrac{{\sqrt 2 }}{{\sqrt 3 }}} \right)^2} - {\left( {\dfrac{1}{{\sqrt 3 }}} \right)^2} \\
= \dfrac{2}{3} - \dfrac{1}{3} \\
= \dfrac{1}{3} \\
$
Note: The above question can be solved by using trigonometric identities, but here it is done by visualizing the terms in the form of sides of the right angled triangle, thus making the problem easier to solve.
Given:$\sqrt 3 \tan \theta = 3\sin \theta $
$
\Rightarrow \tan \theta = \dfrac{3}{{\sqrt 3 }}\sin \theta \\
\Rightarrow \tan \theta = \sqrt 3 \sin \theta \\
\Rightarrow \dfrac{{\tan \theta }}{{\sin \theta }} = \sqrt 3 \\
\Rightarrow \cos \theta = \dfrac{1}{{\sqrt 3 }} \\
\Rightarrow \cos \theta = \dfrac{{Adjacent{\text{ }}side}}{{Hypotenuse}} = \dfrac{B}{H} = \dfrac{1}{{\sqrt 3 }} \\
$
From the above figure for the Right angled triangle by using Pythagoras Theorem,
$
{H^2} = {P^2} + {B^2} \\
{\left( {\sqrt 3 } \right)^2} = {P^2} + {1^2} \\
{P^2} = 3 - 1 \\
{P^2} = 2 \\
P = \sqrt 2 \\
$
Now, ${\sin ^2}\theta - {\cos ^2}\theta = {\left( {\dfrac{P}{H}} \right)^2} - {\left( {\dfrac{B}{H}} \right)^2}$
$
= {\left( {\dfrac{{\sqrt 2 }}{{\sqrt 3 }}} \right)^2} - {\left( {\dfrac{1}{{\sqrt 3 }}} \right)^2} \\
= \dfrac{2}{3} - \dfrac{1}{3} \\
= \dfrac{1}{3} \\
$
Note: The above question can be solved by using trigonometric identities, but here it is done by visualizing the terms in the form of sides of the right angled triangle, thus making the problem easier to solve.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

