
If $f(x)={{\sin }^{2}}x+{{\sin }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right)$ and$g\left( \dfrac{5}{4} \right)=1$, then $\left( gof \right)\left( x \right)$ is equal to
A. 0
B. 2
C. 1
D. 3
Answer
608.4k+ views
Hint: In the question use the identities $\sin (A+B)=\sin A\cos B+\cos A\sin B$and $\cos (A+B)=\cos A\cos B-\sin A\sin B$and get the desired result.
Complete step-by-step answer:
In the question we are given that,
$f(x)={{\sin }^{2}}x+{{\sin }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right)$
We will now consider the identities,
$\sin (A+B)=\sin A\cos B+\cos A\sin B$
And
$\cos (A+B)=\cos A\cos B-\sin A\sin B$
Using the above mentioned identities to expand f(x), we get,
$f(x)={{\sin }^{2}}x+{{\left\{ \sin \left( x+\dfrac{\pi }{3} \right) \right\}}^{2}}+\cos x\left\{ \cos \left( x+\dfrac{\pi }{3} \right) \right\}$
$f(x)={{\sin }^{2}}x+{{\left\{ \sin x\cos \dfrac{\pi }{3}+\cos x\sin \dfrac{\pi }{3} \right\}}^{2}}+\cos x\left\{ \cos x\cos \dfrac{\pi }{3}-\sin x\sin \dfrac{\pi }{3} \right\}$
We know $\cos \dfrac{\pi }{3}=\dfrac{1}{2}$ and $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$,
substituting these values in above equation, we get
$f(x)={{\sin }^{2}}x+{{\left\{ \dfrac{\sin x}{2}+\dfrac{\sqrt{3}\cos x}{2} \right\}}^{2}}+\cos x\left\{ \dfrac{\cos x}{2}-\dfrac{\sqrt{3}\sin x}{2} \right\}$
Now we will expand f(x) and use the formula
${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
So,
\[\begin{align}
& f(x)={{\sin }^{2}}x+{{\left( \dfrac{\sin x}{2} \right)}^{2}}+2\left( \dfrac{\sin x}{2} \right)\left( \dfrac{\sqrt{3}\cos x}{2} \right)+{{\left( \dfrac{\sqrt{3}\cos x}{2} \right)}^{2}}+\dfrac{{{\cos }^{2}}x}{2}-\dfrac{\sqrt{3}\cos x\sin x}{2} \\
& f(x)={{\sin }^{2}}x+\dfrac{{{\sin }^{2}}x}{4}+\dfrac{3{{\cos }^{2}}x}{4}+\dfrac{\sqrt{3}\sin x\cos x}{2}+\dfrac{{{\cos }^{2}}x}{2}-\dfrac{\sqrt{3}\cos x\sin x}{2} \\
\end{align}\]
By cancelling the like terms, we get
\[f(x)={{\sin }^{2}}x+\dfrac{{{\sin }^{2}}x}{4}+\dfrac{3{{\cos }^{2}}x}{4}+\dfrac{{{\cos }^{2}}x}{2}\]
Taking out the common terms, we get
\[f(x)={{\sin }^{2}}x\left( 1+\dfrac{1}{4} \right)+{{\cos }^{2}}x\left( \dfrac{3}{4}+\dfrac{1}{2} \right)\]
Taking the LCM and solving, we get
\[\begin{align}
& f(x)={{\sin }^{2}}x\left( \dfrac{4+1}{4} \right)+{{\cos }^{2}}x\left( \dfrac{3+2}{4} \right) \\
& \Rightarrow f(x)={{\sin }^{2}}x\left( \dfrac{5}{4} \right)+{{\cos }^{2}}x\left( \dfrac{5}{4} \right) \\
\end{align}\]
Now we take out the common term, and write it as,
\[f(x)=\dfrac{5}{4}\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)\]
Now we will use the identity
\[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]
We get,
\[f(x)=\dfrac{5}{4}\times 1=\dfrac{5}{4}\]
Now in the equation where we were asked to find out the value of $\left( gof \right)\left( x \right)$, i.e., $g(f(x))$
Here in the above operations we got\[f(x)=\dfrac{5}{4}\].
So, we get
$g(f(x))=g\left( \dfrac{5}{4} \right)$
In the question it is already given that $g\left( \dfrac{5}{4} \right)=1$
So now,
$g(f(x))$=$g\left( \dfrac{5}{4} \right)=1$
Therefore, $\left( gof \right)\left( x \right)$ is equal to 1.
Hence the correct answer is option ‘C’.
Note: Generally in these types of questions, students are always in a dilemma which identity they should use.
Another approach is substituting \[{{\sin }^{2}}x=1-{{\cos }^{2}}x\] in the given equation, we get
$f(x)={{\sin }^{2}}x+1-{{\cos }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right)$
Now taking out the common term, we get
\[f(x)={{\sin }^{2}}x+1+\cos \left( x+\dfrac{\pi }{3} \right)\left( \cos x-\cos \left( x+\dfrac{\pi }{3} \right) \right)\]
But this becomes a tedious one.
Complete step-by-step answer:
In the question we are given that,
$f(x)={{\sin }^{2}}x+{{\sin }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right)$
We will now consider the identities,
$\sin (A+B)=\sin A\cos B+\cos A\sin B$
And
$\cos (A+B)=\cos A\cos B-\sin A\sin B$
Using the above mentioned identities to expand f(x), we get,
$f(x)={{\sin }^{2}}x+{{\left\{ \sin \left( x+\dfrac{\pi }{3} \right) \right\}}^{2}}+\cos x\left\{ \cos \left( x+\dfrac{\pi }{3} \right) \right\}$
$f(x)={{\sin }^{2}}x+{{\left\{ \sin x\cos \dfrac{\pi }{3}+\cos x\sin \dfrac{\pi }{3} \right\}}^{2}}+\cos x\left\{ \cos x\cos \dfrac{\pi }{3}-\sin x\sin \dfrac{\pi }{3} \right\}$
We know $\cos \dfrac{\pi }{3}=\dfrac{1}{2}$ and $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$,
substituting these values in above equation, we get
$f(x)={{\sin }^{2}}x+{{\left\{ \dfrac{\sin x}{2}+\dfrac{\sqrt{3}\cos x}{2} \right\}}^{2}}+\cos x\left\{ \dfrac{\cos x}{2}-\dfrac{\sqrt{3}\sin x}{2} \right\}$
Now we will expand f(x) and use the formula
${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
So,
\[\begin{align}
& f(x)={{\sin }^{2}}x+{{\left( \dfrac{\sin x}{2} \right)}^{2}}+2\left( \dfrac{\sin x}{2} \right)\left( \dfrac{\sqrt{3}\cos x}{2} \right)+{{\left( \dfrac{\sqrt{3}\cos x}{2} \right)}^{2}}+\dfrac{{{\cos }^{2}}x}{2}-\dfrac{\sqrt{3}\cos x\sin x}{2} \\
& f(x)={{\sin }^{2}}x+\dfrac{{{\sin }^{2}}x}{4}+\dfrac{3{{\cos }^{2}}x}{4}+\dfrac{\sqrt{3}\sin x\cos x}{2}+\dfrac{{{\cos }^{2}}x}{2}-\dfrac{\sqrt{3}\cos x\sin x}{2} \\
\end{align}\]
By cancelling the like terms, we get
\[f(x)={{\sin }^{2}}x+\dfrac{{{\sin }^{2}}x}{4}+\dfrac{3{{\cos }^{2}}x}{4}+\dfrac{{{\cos }^{2}}x}{2}\]
Taking out the common terms, we get
\[f(x)={{\sin }^{2}}x\left( 1+\dfrac{1}{4} \right)+{{\cos }^{2}}x\left( \dfrac{3}{4}+\dfrac{1}{2} \right)\]
Taking the LCM and solving, we get
\[\begin{align}
& f(x)={{\sin }^{2}}x\left( \dfrac{4+1}{4} \right)+{{\cos }^{2}}x\left( \dfrac{3+2}{4} \right) \\
& \Rightarrow f(x)={{\sin }^{2}}x\left( \dfrac{5}{4} \right)+{{\cos }^{2}}x\left( \dfrac{5}{4} \right) \\
\end{align}\]
Now we take out the common term, and write it as,
\[f(x)=\dfrac{5}{4}\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)\]
Now we will use the identity
\[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]
We get,
\[f(x)=\dfrac{5}{4}\times 1=\dfrac{5}{4}\]
Now in the equation where we were asked to find out the value of $\left( gof \right)\left( x \right)$, i.e., $g(f(x))$
Here in the above operations we got\[f(x)=\dfrac{5}{4}\].
So, we get
$g(f(x))=g\left( \dfrac{5}{4} \right)$
In the question it is already given that $g\left( \dfrac{5}{4} \right)=1$
So now,
$g(f(x))$=$g\left( \dfrac{5}{4} \right)=1$
Therefore, $\left( gof \right)\left( x \right)$ is equal to 1.
Hence the correct answer is option ‘C’.
Note: Generally in these types of questions, students are always in a dilemma which identity they should use.
Another approach is substituting \[{{\sin }^{2}}x=1-{{\cos }^{2}}x\] in the given equation, we get
$f(x)={{\sin }^{2}}x+1-{{\cos }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right)$
Now taking out the common term, we get
\[f(x)={{\sin }^{2}}x+1+\cos \left( x+\dfrac{\pi }{3} \right)\left( \cos x-\cos \left( x+\dfrac{\pi }{3} \right) \right)\]
But this becomes a tedious one.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

