If $f(x)={{\sin }^{2}}x+{{\sin }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right)$ and$g\left( \dfrac{5}{4} \right)=1$, then $\left( gof \right)\left( x \right)$ is equal to
A. 0
B. 2
C. 1
D. 3
Answer
328.2k+ views
Hint: In the question use the identities $\sin (A+B)=\sin A\cos B+\cos A\sin B$and $\cos (A+B)=\cos A\cos B-\sin A\sin B$and get the desired result.
Complete step-by-step answer:
In the question we are given that,
$f(x)={{\sin }^{2}}x+{{\sin }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right)$
We will now consider the identities,
$\sin (A+B)=\sin A\cos B+\cos A\sin B$
And
$\cos (A+B)=\cos A\cos B-\sin A\sin B$
Using the above mentioned identities to expand f(x), we get,
$f(x)={{\sin }^{2}}x+{{\left\{ \sin \left( x+\dfrac{\pi }{3} \right) \right\}}^{2}}+\cos x\left\{ \cos \left( x+\dfrac{\pi }{3} \right) \right\}$
$f(x)={{\sin }^{2}}x+{{\left\{ \sin x\cos \dfrac{\pi }{3}+\cos x\sin \dfrac{\pi }{3} \right\}}^{2}}+\cos x\left\{ \cos x\cos \dfrac{\pi }{3}-\sin x\sin \dfrac{\pi }{3} \right\}$
We know $\cos \dfrac{\pi }{3}=\dfrac{1}{2}$ and $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$,
substituting these values in above equation, we get
$f(x)={{\sin }^{2}}x+{{\left\{ \dfrac{\sin x}{2}+\dfrac{\sqrt{3}\cos x}{2} \right\}}^{2}}+\cos x\left\{ \dfrac{\cos x}{2}-\dfrac{\sqrt{3}\sin x}{2} \right\}$
Now we will expand f(x) and use the formula
${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
So,
\[\begin{align}
& f(x)={{\sin }^{2}}x+{{\left( \dfrac{\sin x}{2} \right)}^{2}}+2\left( \dfrac{\sin x}{2} \right)\left( \dfrac{\sqrt{3}\cos x}{2} \right)+{{\left( \dfrac{\sqrt{3}\cos x}{2} \right)}^{2}}+\dfrac{{{\cos }^{2}}x}{2}-\dfrac{\sqrt{3}\cos x\sin x}{2} \\
& f(x)={{\sin }^{2}}x+\dfrac{{{\sin }^{2}}x}{4}+\dfrac{3{{\cos }^{2}}x}{4}+\dfrac{\sqrt{3}\sin x\cos x}{2}+\dfrac{{{\cos }^{2}}x}{2}-\dfrac{\sqrt{3}\cos x\sin x}{2} \\
\end{align}\]
By cancelling the like terms, we get
\[f(x)={{\sin }^{2}}x+\dfrac{{{\sin }^{2}}x}{4}+\dfrac{3{{\cos }^{2}}x}{4}+\dfrac{{{\cos }^{2}}x}{2}\]
Taking out the common terms, we get
\[f(x)={{\sin }^{2}}x\left( 1+\dfrac{1}{4} \right)+{{\cos }^{2}}x\left( \dfrac{3}{4}+\dfrac{1}{2} \right)\]
Taking the LCM and solving, we get
\[\begin{align}
& f(x)={{\sin }^{2}}x\left( \dfrac{4+1}{4} \right)+{{\cos }^{2}}x\left( \dfrac{3+2}{4} \right) \\
& \Rightarrow f(x)={{\sin }^{2}}x\left( \dfrac{5}{4} \right)+{{\cos }^{2}}x\left( \dfrac{5}{4} \right) \\
\end{align}\]
Now we take out the common term, and write it as,
\[f(x)=\dfrac{5}{4}\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)\]
Now we will use the identity
\[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]
We get,
\[f(x)=\dfrac{5}{4}\times 1=\dfrac{5}{4}\]
Now in the equation where we were asked to find out the value of $\left( gof \right)\left( x \right)$, i.e., $g(f(x))$
Here in the above operations we got\[f(x)=\dfrac{5}{4}\].
So, we get
$g(f(x))=g\left( \dfrac{5}{4} \right)$
In the question it is already given that $g\left( \dfrac{5}{4} \right)=1$
So now,
$g(f(x))$=$g\left( \dfrac{5}{4} \right)=1$
Therefore, $\left( gof \right)\left( x \right)$ is equal to 1.
Hence the correct answer is option ‘C’.
Note: Generally in these types of questions, students are always in a dilemma which identity they should use.
Another approach is substituting \[{{\sin }^{2}}x=1-{{\cos }^{2}}x\] in the given equation, we get
$f(x)={{\sin }^{2}}x+1-{{\cos }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right)$
Now taking out the common term, we get
\[f(x)={{\sin }^{2}}x+1+\cos \left( x+\dfrac{\pi }{3} \right)\left( \cos x-\cos \left( x+\dfrac{\pi }{3} \right) \right)\]
But this becomes a tedious one.
Complete step-by-step answer:
In the question we are given that,
$f(x)={{\sin }^{2}}x+{{\sin }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right)$
We will now consider the identities,
$\sin (A+B)=\sin A\cos B+\cos A\sin B$
And
$\cos (A+B)=\cos A\cos B-\sin A\sin B$
Using the above mentioned identities to expand f(x), we get,
$f(x)={{\sin }^{2}}x+{{\left\{ \sin \left( x+\dfrac{\pi }{3} \right) \right\}}^{2}}+\cos x\left\{ \cos \left( x+\dfrac{\pi }{3} \right) \right\}$
$f(x)={{\sin }^{2}}x+{{\left\{ \sin x\cos \dfrac{\pi }{3}+\cos x\sin \dfrac{\pi }{3} \right\}}^{2}}+\cos x\left\{ \cos x\cos \dfrac{\pi }{3}-\sin x\sin \dfrac{\pi }{3} \right\}$
We know $\cos \dfrac{\pi }{3}=\dfrac{1}{2}$ and $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$,
substituting these values in above equation, we get
$f(x)={{\sin }^{2}}x+{{\left\{ \dfrac{\sin x}{2}+\dfrac{\sqrt{3}\cos x}{2} \right\}}^{2}}+\cos x\left\{ \dfrac{\cos x}{2}-\dfrac{\sqrt{3}\sin x}{2} \right\}$
Now we will expand f(x) and use the formula
${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
So,
\[\begin{align}
& f(x)={{\sin }^{2}}x+{{\left( \dfrac{\sin x}{2} \right)}^{2}}+2\left( \dfrac{\sin x}{2} \right)\left( \dfrac{\sqrt{3}\cos x}{2} \right)+{{\left( \dfrac{\sqrt{3}\cos x}{2} \right)}^{2}}+\dfrac{{{\cos }^{2}}x}{2}-\dfrac{\sqrt{3}\cos x\sin x}{2} \\
& f(x)={{\sin }^{2}}x+\dfrac{{{\sin }^{2}}x}{4}+\dfrac{3{{\cos }^{2}}x}{4}+\dfrac{\sqrt{3}\sin x\cos x}{2}+\dfrac{{{\cos }^{2}}x}{2}-\dfrac{\sqrt{3}\cos x\sin x}{2} \\
\end{align}\]
By cancelling the like terms, we get
\[f(x)={{\sin }^{2}}x+\dfrac{{{\sin }^{2}}x}{4}+\dfrac{3{{\cos }^{2}}x}{4}+\dfrac{{{\cos }^{2}}x}{2}\]
Taking out the common terms, we get
\[f(x)={{\sin }^{2}}x\left( 1+\dfrac{1}{4} \right)+{{\cos }^{2}}x\left( \dfrac{3}{4}+\dfrac{1}{2} \right)\]
Taking the LCM and solving, we get
\[\begin{align}
& f(x)={{\sin }^{2}}x\left( \dfrac{4+1}{4} \right)+{{\cos }^{2}}x\left( \dfrac{3+2}{4} \right) \\
& \Rightarrow f(x)={{\sin }^{2}}x\left( \dfrac{5}{4} \right)+{{\cos }^{2}}x\left( \dfrac{5}{4} \right) \\
\end{align}\]
Now we take out the common term, and write it as,
\[f(x)=\dfrac{5}{4}\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)\]
Now we will use the identity
\[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]
We get,
\[f(x)=\dfrac{5}{4}\times 1=\dfrac{5}{4}\]
Now in the equation where we were asked to find out the value of $\left( gof \right)\left( x \right)$, i.e., $g(f(x))$
Here in the above operations we got\[f(x)=\dfrac{5}{4}\].
So, we get
$g(f(x))=g\left( \dfrac{5}{4} \right)$
In the question it is already given that $g\left( \dfrac{5}{4} \right)=1$
So now,
$g(f(x))$=$g\left( \dfrac{5}{4} \right)=1$
Therefore, $\left( gof \right)\left( x \right)$ is equal to 1.
Hence the correct answer is option ‘C’.
Note: Generally in these types of questions, students are always in a dilemma which identity they should use.
Another approach is substituting \[{{\sin }^{2}}x=1-{{\cos }^{2}}x\] in the given equation, we get
$f(x)={{\sin }^{2}}x+1-{{\cos }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right)$
Now taking out the common term, we get
\[f(x)={{\sin }^{2}}x+1+\cos \left( x+\dfrac{\pi }{3} \right)\left( \cos x-\cos \left( x+\dfrac{\pi }{3} \right) \right)\]
But this becomes a tedious one.
Last updated date: 01st Jun 2023
•
Total views: 328.2k
•
Views today: 4.84k
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
