Answer
Verified
494.7k+ views
Hint: In the question use the identities $\sin (A+B)=\sin A\cos B+\cos A\sin B$and $\cos (A+B)=\cos A\cos B-\sin A\sin B$and get the desired result.
Complete step-by-step answer:
In the question we are given that,
$f(x)={{\sin }^{2}}x+{{\sin }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right)$
We will now consider the identities,
$\sin (A+B)=\sin A\cos B+\cos A\sin B$
And
$\cos (A+B)=\cos A\cos B-\sin A\sin B$
Using the above mentioned identities to expand f(x), we get,
$f(x)={{\sin }^{2}}x+{{\left\{ \sin \left( x+\dfrac{\pi }{3} \right) \right\}}^{2}}+\cos x\left\{ \cos \left( x+\dfrac{\pi }{3} \right) \right\}$
$f(x)={{\sin }^{2}}x+{{\left\{ \sin x\cos \dfrac{\pi }{3}+\cos x\sin \dfrac{\pi }{3} \right\}}^{2}}+\cos x\left\{ \cos x\cos \dfrac{\pi }{3}-\sin x\sin \dfrac{\pi }{3} \right\}$
We know $\cos \dfrac{\pi }{3}=\dfrac{1}{2}$ and $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$,
substituting these values in above equation, we get
$f(x)={{\sin }^{2}}x+{{\left\{ \dfrac{\sin x}{2}+\dfrac{\sqrt{3}\cos x}{2} \right\}}^{2}}+\cos x\left\{ \dfrac{\cos x}{2}-\dfrac{\sqrt{3}\sin x}{2} \right\}$
Now we will expand f(x) and use the formula
${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
So,
\[\begin{align}
& f(x)={{\sin }^{2}}x+{{\left( \dfrac{\sin x}{2} \right)}^{2}}+2\left( \dfrac{\sin x}{2} \right)\left( \dfrac{\sqrt{3}\cos x}{2} \right)+{{\left( \dfrac{\sqrt{3}\cos x}{2} \right)}^{2}}+\dfrac{{{\cos }^{2}}x}{2}-\dfrac{\sqrt{3}\cos x\sin x}{2} \\
& f(x)={{\sin }^{2}}x+\dfrac{{{\sin }^{2}}x}{4}+\dfrac{3{{\cos }^{2}}x}{4}+\dfrac{\sqrt{3}\sin x\cos x}{2}+\dfrac{{{\cos }^{2}}x}{2}-\dfrac{\sqrt{3}\cos x\sin x}{2} \\
\end{align}\]
By cancelling the like terms, we get
\[f(x)={{\sin }^{2}}x+\dfrac{{{\sin }^{2}}x}{4}+\dfrac{3{{\cos }^{2}}x}{4}+\dfrac{{{\cos }^{2}}x}{2}\]
Taking out the common terms, we get
\[f(x)={{\sin }^{2}}x\left( 1+\dfrac{1}{4} \right)+{{\cos }^{2}}x\left( \dfrac{3}{4}+\dfrac{1}{2} \right)\]
Taking the LCM and solving, we get
\[\begin{align}
& f(x)={{\sin }^{2}}x\left( \dfrac{4+1}{4} \right)+{{\cos }^{2}}x\left( \dfrac{3+2}{4} \right) \\
& \Rightarrow f(x)={{\sin }^{2}}x\left( \dfrac{5}{4} \right)+{{\cos }^{2}}x\left( \dfrac{5}{4} \right) \\
\end{align}\]
Now we take out the common term, and write it as,
\[f(x)=\dfrac{5}{4}\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)\]
Now we will use the identity
\[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]
We get,
\[f(x)=\dfrac{5}{4}\times 1=\dfrac{5}{4}\]
Now in the equation where we were asked to find out the value of $\left( gof \right)\left( x \right)$, i.e., $g(f(x))$
Here in the above operations we got\[f(x)=\dfrac{5}{4}\].
So, we get
$g(f(x))=g\left( \dfrac{5}{4} \right)$
In the question it is already given that $g\left( \dfrac{5}{4} \right)=1$
So now,
$g(f(x))$=$g\left( \dfrac{5}{4} \right)=1$
Therefore, $\left( gof \right)\left( x \right)$ is equal to 1.
Hence the correct answer is option ‘C’.
Note: Generally in these types of questions, students are always in a dilemma which identity they should use.
Another approach is substituting \[{{\sin }^{2}}x=1-{{\cos }^{2}}x\] in the given equation, we get
$f(x)={{\sin }^{2}}x+1-{{\cos }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right)$
Now taking out the common term, we get
\[f(x)={{\sin }^{2}}x+1+\cos \left( x+\dfrac{\pi }{3} \right)\left( \cos x-\cos \left( x+\dfrac{\pi }{3} \right) \right)\]
But this becomes a tedious one.
Complete step-by-step answer:
In the question we are given that,
$f(x)={{\sin }^{2}}x+{{\sin }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right)$
We will now consider the identities,
$\sin (A+B)=\sin A\cos B+\cos A\sin B$
And
$\cos (A+B)=\cos A\cos B-\sin A\sin B$
Using the above mentioned identities to expand f(x), we get,
$f(x)={{\sin }^{2}}x+{{\left\{ \sin \left( x+\dfrac{\pi }{3} \right) \right\}}^{2}}+\cos x\left\{ \cos \left( x+\dfrac{\pi }{3} \right) \right\}$
$f(x)={{\sin }^{2}}x+{{\left\{ \sin x\cos \dfrac{\pi }{3}+\cos x\sin \dfrac{\pi }{3} \right\}}^{2}}+\cos x\left\{ \cos x\cos \dfrac{\pi }{3}-\sin x\sin \dfrac{\pi }{3} \right\}$
We know $\cos \dfrac{\pi }{3}=\dfrac{1}{2}$ and $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$,
substituting these values in above equation, we get
$f(x)={{\sin }^{2}}x+{{\left\{ \dfrac{\sin x}{2}+\dfrac{\sqrt{3}\cos x}{2} \right\}}^{2}}+\cos x\left\{ \dfrac{\cos x}{2}-\dfrac{\sqrt{3}\sin x}{2} \right\}$
Now we will expand f(x) and use the formula
${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
So,
\[\begin{align}
& f(x)={{\sin }^{2}}x+{{\left( \dfrac{\sin x}{2} \right)}^{2}}+2\left( \dfrac{\sin x}{2} \right)\left( \dfrac{\sqrt{3}\cos x}{2} \right)+{{\left( \dfrac{\sqrt{3}\cos x}{2} \right)}^{2}}+\dfrac{{{\cos }^{2}}x}{2}-\dfrac{\sqrt{3}\cos x\sin x}{2} \\
& f(x)={{\sin }^{2}}x+\dfrac{{{\sin }^{2}}x}{4}+\dfrac{3{{\cos }^{2}}x}{4}+\dfrac{\sqrt{3}\sin x\cos x}{2}+\dfrac{{{\cos }^{2}}x}{2}-\dfrac{\sqrt{3}\cos x\sin x}{2} \\
\end{align}\]
By cancelling the like terms, we get
\[f(x)={{\sin }^{2}}x+\dfrac{{{\sin }^{2}}x}{4}+\dfrac{3{{\cos }^{2}}x}{4}+\dfrac{{{\cos }^{2}}x}{2}\]
Taking out the common terms, we get
\[f(x)={{\sin }^{2}}x\left( 1+\dfrac{1}{4} \right)+{{\cos }^{2}}x\left( \dfrac{3}{4}+\dfrac{1}{2} \right)\]
Taking the LCM and solving, we get
\[\begin{align}
& f(x)={{\sin }^{2}}x\left( \dfrac{4+1}{4} \right)+{{\cos }^{2}}x\left( \dfrac{3+2}{4} \right) \\
& \Rightarrow f(x)={{\sin }^{2}}x\left( \dfrac{5}{4} \right)+{{\cos }^{2}}x\left( \dfrac{5}{4} \right) \\
\end{align}\]
Now we take out the common term, and write it as,
\[f(x)=\dfrac{5}{4}\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)\]
Now we will use the identity
\[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]
We get,
\[f(x)=\dfrac{5}{4}\times 1=\dfrac{5}{4}\]
Now in the equation where we were asked to find out the value of $\left( gof \right)\left( x \right)$, i.e., $g(f(x))$
Here in the above operations we got\[f(x)=\dfrac{5}{4}\].
So, we get
$g(f(x))=g\left( \dfrac{5}{4} \right)$
In the question it is already given that $g\left( \dfrac{5}{4} \right)=1$
So now,
$g(f(x))$=$g\left( \dfrac{5}{4} \right)=1$
Therefore, $\left( gof \right)\left( x \right)$ is equal to 1.
Hence the correct answer is option ‘C’.
Note: Generally in these types of questions, students are always in a dilemma which identity they should use.
Another approach is substituting \[{{\sin }^{2}}x=1-{{\cos }^{2}}x\] in the given equation, we get
$f(x)={{\sin }^{2}}x+1-{{\cos }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right)$
Now taking out the common term, we get
\[f(x)={{\sin }^{2}}x+1+\cos \left( x+\dfrac{\pi }{3} \right)\left( \cos x-\cos \left( x+\dfrac{\pi }{3} \right) \right)\]
But this becomes a tedious one.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it