
If \[f(x)=\left| \begin{matrix}
{{x}^{n}} & n! & 2 \\
\cos x & \cos \dfrac{n\pi }{2} & 4 \\
\sin x & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\] , then find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}\] .
Answer
611.4k+ views
Hint:The value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\left| \begin{matrix}
f(x) & {{a}_{1}} & {{a}_{2}} \\
g(x) & {{b}_{1}} & {{b}_{2}} \\
h(x) & {{c}_{1}} & {{c}_{2}} \\
\end{matrix} \right|\] where \[{{a}_{1}},{{a}_{2}},{{b}_{1}},{{b}_{2}},{{c}_{1}}\] and \[{{c}_{2}}\] are constant and is equal to\[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\left| \begin{matrix}
\dfrac{{{d}^{n}}}{d{{x}^{n}}}f(x) & {{a}_{1}} & {{a}_{2}} \\
\dfrac{{{d}^{n}}}{d{{x}^{n}}}g(x) & {{b}_{1}} & {{b}_{2}} \\
\dfrac{{{d}^{n}}}{d{{x}^{n}}}h(x) & {{c}_{1}} & {{c}_{2}} \\
\end{matrix} \right|\] .
Complete step-by-step answer:
We are given the determinant\[f(x)=\left| \begin{matrix}
{{x}^{n}} & n! & 2 \\
\cos x & \cos \dfrac{n\pi }{2} & 4 \\
\sin x & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\] .
We need to find the value of \[{{n}^{th}}\] derivative of the function \[f(x)\] with respect to \[x\] at \[x=0\], i.e. we need to find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}\] .
First , we will find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\left[ f(x) \right]\] , i.e. the value of \[{{n}^{th}}\] derivative of the function \[f(x)\] with respect to \[x\] . To find the value of \[{{n}^{th}}\] derivative of the function \[f(x)\] with respect to \[x\] , we will differentiate the function \[f(x)\] \[n\] times with respect to \[x\] .
On differentiating the function \[n\] times with respect to \[x\], we will get,
\[\dfrac{{{d}^{n}}}{d{{x}^{n}}}f(x)=\left| \begin{matrix}
\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{x}^{n}} & n! & 2 \\
\dfrac{{{d}^{n}}}{d{{x}^{n}}}\cos x & \cos \dfrac{n\pi }{2} & 4 \\
\dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin x & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\]
Now, we need to find the values of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{x}^{n}}\] , \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\cos x\] and \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin x\] .
First , we will find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{x}^{n}}\] .
We know , \[\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}};\dfrac{{{d}^{2}}}{d{{x}^{2}}}{{x}^{n}}=(n)(n-1){{x}^{n-2}};\dfrac{{{d}^{3}}}{d{{x}^{3}}}{{x}^{n}}=(n)(n-1)(n-2){{x}^{n-3}}\] and so on.
On following the pattern , we can conclude: \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{x}^{n}}=(n)(n-1)(n-2)(n-3).....1=n!\] .
Now , we will find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\cos x\] .
We know,
\[\dfrac{d}{dx}\cos x=-\sin x=\cos \left( \dfrac{\pi }{2}+x \right);\dfrac{{{d}^{2}}}{d{{x}^{2}}}\cos x=-\cos x=\cos \left( \dfrac{2\pi }{2}+x \right);\dfrac{{{d}^{3}}}{d{{x}^{3}}}\cos x=\sin x=\cos \left( \dfrac{3\pi }{2}+x \right)\] and so on.
On following the pattern, we can conclude: \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\cos x=\cos \left( \dfrac{n\pi }{2}+x \right)\] .
Now , we will find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin x\].
We know ,
\[\dfrac{d}{dx}\sin x=\cos x=\sin \left( \dfrac{\pi }{2}+x \right);\dfrac{{{d}^{2}}}{d{{x}^{2}}}\sin x=-\sin x=\sin \left( \dfrac{2\pi }{2}+x \right);\dfrac{{{d}^{3}}}{d{{x}^{3}}}\sin x=-\cos x=\sin \left( \dfrac{3\pi }{2}+x \right)\] and so on.
On following the pattern, we can conclude: \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin x=\sin \left( \dfrac{n\pi }{2}+x \right)\] .
Substituting these values in \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}f(x)\] , we get,
\[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\left[ f(x) \right]=\left| \begin{matrix}
n! & n! & 2 \\
\cos \left( \dfrac{n\pi }{2}+x \right) & \cos \dfrac{n\pi }{2} & 4 \\
\sin \left( \dfrac{n\pi }{2}+x \right) & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\] .
Now , to find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}\] , we will substitute \[x=0\] in \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}f(x)\] .
So, \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}=\left| \begin{matrix}
n! & n! & 2 \\
\cos \left( \dfrac{n\pi }{2} \right) & \cos \dfrac{n\pi }{2} & 4 \\
\sin \left( \dfrac{n\pi }{2} \right) & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\]
Clearly , we can see that the two columns in the determinant are the same. Hence , the value of the determinant is zero.
So, \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}=0\].
Note: While finding the value of \[{{n}^{th}}\] derivative of \[\sin x\] and \[\cos x\] with respect to \[x\] , be careful of the sign convention. Students generally make mistakes in the sign and end up getting a wrong answer.
f(x) & {{a}_{1}} & {{a}_{2}} \\
g(x) & {{b}_{1}} & {{b}_{2}} \\
h(x) & {{c}_{1}} & {{c}_{2}} \\
\end{matrix} \right|\] where \[{{a}_{1}},{{a}_{2}},{{b}_{1}},{{b}_{2}},{{c}_{1}}\] and \[{{c}_{2}}\] are constant and is equal to\[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\left| \begin{matrix}
\dfrac{{{d}^{n}}}{d{{x}^{n}}}f(x) & {{a}_{1}} & {{a}_{2}} \\
\dfrac{{{d}^{n}}}{d{{x}^{n}}}g(x) & {{b}_{1}} & {{b}_{2}} \\
\dfrac{{{d}^{n}}}{d{{x}^{n}}}h(x) & {{c}_{1}} & {{c}_{2}} \\
\end{matrix} \right|\] .
Complete step-by-step answer:
We are given the determinant\[f(x)=\left| \begin{matrix}
{{x}^{n}} & n! & 2 \\
\cos x & \cos \dfrac{n\pi }{2} & 4 \\
\sin x & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\] .
We need to find the value of \[{{n}^{th}}\] derivative of the function \[f(x)\] with respect to \[x\] at \[x=0\], i.e. we need to find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}\] .
First , we will find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\left[ f(x) \right]\] , i.e. the value of \[{{n}^{th}}\] derivative of the function \[f(x)\] with respect to \[x\] . To find the value of \[{{n}^{th}}\] derivative of the function \[f(x)\] with respect to \[x\] , we will differentiate the function \[f(x)\] \[n\] times with respect to \[x\] .
On differentiating the function \[n\] times with respect to \[x\], we will get,
\[\dfrac{{{d}^{n}}}{d{{x}^{n}}}f(x)=\left| \begin{matrix}
\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{x}^{n}} & n! & 2 \\
\dfrac{{{d}^{n}}}{d{{x}^{n}}}\cos x & \cos \dfrac{n\pi }{2} & 4 \\
\dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin x & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\]
Now, we need to find the values of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{x}^{n}}\] , \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\cos x\] and \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin x\] .
First , we will find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{x}^{n}}\] .
We know , \[\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}};\dfrac{{{d}^{2}}}{d{{x}^{2}}}{{x}^{n}}=(n)(n-1){{x}^{n-2}};\dfrac{{{d}^{3}}}{d{{x}^{3}}}{{x}^{n}}=(n)(n-1)(n-2){{x}^{n-3}}\] and so on.
On following the pattern , we can conclude: \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{x}^{n}}=(n)(n-1)(n-2)(n-3).....1=n!\] .
Now , we will find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\cos x\] .
We know,
\[\dfrac{d}{dx}\cos x=-\sin x=\cos \left( \dfrac{\pi }{2}+x \right);\dfrac{{{d}^{2}}}{d{{x}^{2}}}\cos x=-\cos x=\cos \left( \dfrac{2\pi }{2}+x \right);\dfrac{{{d}^{3}}}{d{{x}^{3}}}\cos x=\sin x=\cos \left( \dfrac{3\pi }{2}+x \right)\] and so on.
On following the pattern, we can conclude: \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\cos x=\cos \left( \dfrac{n\pi }{2}+x \right)\] .
Now , we will find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin x\].
We know ,
\[\dfrac{d}{dx}\sin x=\cos x=\sin \left( \dfrac{\pi }{2}+x \right);\dfrac{{{d}^{2}}}{d{{x}^{2}}}\sin x=-\sin x=\sin \left( \dfrac{2\pi }{2}+x \right);\dfrac{{{d}^{3}}}{d{{x}^{3}}}\sin x=-\cos x=\sin \left( \dfrac{3\pi }{2}+x \right)\] and so on.
On following the pattern, we can conclude: \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin x=\sin \left( \dfrac{n\pi }{2}+x \right)\] .
Substituting these values in \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}f(x)\] , we get,
\[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\left[ f(x) \right]=\left| \begin{matrix}
n! & n! & 2 \\
\cos \left( \dfrac{n\pi }{2}+x \right) & \cos \dfrac{n\pi }{2} & 4 \\
\sin \left( \dfrac{n\pi }{2}+x \right) & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\] .
Now , to find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}\] , we will substitute \[x=0\] in \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}f(x)\] .
So, \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}=\left| \begin{matrix}
n! & n! & 2 \\
\cos \left( \dfrac{n\pi }{2} \right) & \cos \dfrac{n\pi }{2} & 4 \\
\sin \left( \dfrac{n\pi }{2} \right) & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\]
Clearly , we can see that the two columns in the determinant are the same. Hence , the value of the determinant is zero.
So, \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}=0\].
Note: While finding the value of \[{{n}^{th}}\] derivative of \[\sin x\] and \[\cos x\] with respect to \[x\] , be careful of the sign convention. Students generally make mistakes in the sign and end up getting a wrong answer.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Draw the diagram showing the germination of pollen class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

