
If \[f(x)=\left| \begin{matrix}
{{x}^{n}} & n! & 2 \\
\cos x & \cos \dfrac{n\pi }{2} & 4 \\
\sin x & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\] , then find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}\] .
Answer
597.9k+ views
Hint:The value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\left| \begin{matrix}
f(x) & {{a}_{1}} & {{a}_{2}} \\
g(x) & {{b}_{1}} & {{b}_{2}} \\
h(x) & {{c}_{1}} & {{c}_{2}} \\
\end{matrix} \right|\] where \[{{a}_{1}},{{a}_{2}},{{b}_{1}},{{b}_{2}},{{c}_{1}}\] and \[{{c}_{2}}\] are constant and is equal to\[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\left| \begin{matrix}
\dfrac{{{d}^{n}}}{d{{x}^{n}}}f(x) & {{a}_{1}} & {{a}_{2}} \\
\dfrac{{{d}^{n}}}{d{{x}^{n}}}g(x) & {{b}_{1}} & {{b}_{2}} \\
\dfrac{{{d}^{n}}}{d{{x}^{n}}}h(x) & {{c}_{1}} & {{c}_{2}} \\
\end{matrix} \right|\] .
Complete step-by-step answer:
We are given the determinant\[f(x)=\left| \begin{matrix}
{{x}^{n}} & n! & 2 \\
\cos x & \cos \dfrac{n\pi }{2} & 4 \\
\sin x & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\] .
We need to find the value of \[{{n}^{th}}\] derivative of the function \[f(x)\] with respect to \[x\] at \[x=0\], i.e. we need to find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}\] .
First , we will find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\left[ f(x) \right]\] , i.e. the value of \[{{n}^{th}}\] derivative of the function \[f(x)\] with respect to \[x\] . To find the value of \[{{n}^{th}}\] derivative of the function \[f(x)\] with respect to \[x\] , we will differentiate the function \[f(x)\] \[n\] times with respect to \[x\] .
On differentiating the function \[n\] times with respect to \[x\], we will get,
\[\dfrac{{{d}^{n}}}{d{{x}^{n}}}f(x)=\left| \begin{matrix}
\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{x}^{n}} & n! & 2 \\
\dfrac{{{d}^{n}}}{d{{x}^{n}}}\cos x & \cos \dfrac{n\pi }{2} & 4 \\
\dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin x & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\]
Now, we need to find the values of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{x}^{n}}\] , \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\cos x\] and \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin x\] .
First , we will find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{x}^{n}}\] .
We know , \[\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}};\dfrac{{{d}^{2}}}{d{{x}^{2}}}{{x}^{n}}=(n)(n-1){{x}^{n-2}};\dfrac{{{d}^{3}}}{d{{x}^{3}}}{{x}^{n}}=(n)(n-1)(n-2){{x}^{n-3}}\] and so on.
On following the pattern , we can conclude: \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{x}^{n}}=(n)(n-1)(n-2)(n-3).....1=n!\] .
Now , we will find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\cos x\] .
We know,
\[\dfrac{d}{dx}\cos x=-\sin x=\cos \left( \dfrac{\pi }{2}+x \right);\dfrac{{{d}^{2}}}{d{{x}^{2}}}\cos x=-\cos x=\cos \left( \dfrac{2\pi }{2}+x \right);\dfrac{{{d}^{3}}}{d{{x}^{3}}}\cos x=\sin x=\cos \left( \dfrac{3\pi }{2}+x \right)\] and so on.
On following the pattern, we can conclude: \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\cos x=\cos \left( \dfrac{n\pi }{2}+x \right)\] .
Now , we will find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin x\].
We know ,
\[\dfrac{d}{dx}\sin x=\cos x=\sin \left( \dfrac{\pi }{2}+x \right);\dfrac{{{d}^{2}}}{d{{x}^{2}}}\sin x=-\sin x=\sin \left( \dfrac{2\pi }{2}+x \right);\dfrac{{{d}^{3}}}{d{{x}^{3}}}\sin x=-\cos x=\sin \left( \dfrac{3\pi }{2}+x \right)\] and so on.
On following the pattern, we can conclude: \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin x=\sin \left( \dfrac{n\pi }{2}+x \right)\] .
Substituting these values in \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}f(x)\] , we get,
\[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\left[ f(x) \right]=\left| \begin{matrix}
n! & n! & 2 \\
\cos \left( \dfrac{n\pi }{2}+x \right) & \cos \dfrac{n\pi }{2} & 4 \\
\sin \left( \dfrac{n\pi }{2}+x \right) & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\] .
Now , to find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}\] , we will substitute \[x=0\] in \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}f(x)\] .
So, \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}=\left| \begin{matrix}
n! & n! & 2 \\
\cos \left( \dfrac{n\pi }{2} \right) & \cos \dfrac{n\pi }{2} & 4 \\
\sin \left( \dfrac{n\pi }{2} \right) & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\]
Clearly , we can see that the two columns in the determinant are the same. Hence , the value of the determinant is zero.
So, \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}=0\].
Note: While finding the value of \[{{n}^{th}}\] derivative of \[\sin x\] and \[\cos x\] with respect to \[x\] , be careful of the sign convention. Students generally make mistakes in the sign and end up getting a wrong answer.
f(x) & {{a}_{1}} & {{a}_{2}} \\
g(x) & {{b}_{1}} & {{b}_{2}} \\
h(x) & {{c}_{1}} & {{c}_{2}} \\
\end{matrix} \right|\] where \[{{a}_{1}},{{a}_{2}},{{b}_{1}},{{b}_{2}},{{c}_{1}}\] and \[{{c}_{2}}\] are constant and is equal to\[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\left| \begin{matrix}
\dfrac{{{d}^{n}}}{d{{x}^{n}}}f(x) & {{a}_{1}} & {{a}_{2}} \\
\dfrac{{{d}^{n}}}{d{{x}^{n}}}g(x) & {{b}_{1}} & {{b}_{2}} \\
\dfrac{{{d}^{n}}}{d{{x}^{n}}}h(x) & {{c}_{1}} & {{c}_{2}} \\
\end{matrix} \right|\] .
Complete step-by-step answer:
We are given the determinant\[f(x)=\left| \begin{matrix}
{{x}^{n}} & n! & 2 \\
\cos x & \cos \dfrac{n\pi }{2} & 4 \\
\sin x & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\] .
We need to find the value of \[{{n}^{th}}\] derivative of the function \[f(x)\] with respect to \[x\] at \[x=0\], i.e. we need to find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}\] .
First , we will find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\left[ f(x) \right]\] , i.e. the value of \[{{n}^{th}}\] derivative of the function \[f(x)\] with respect to \[x\] . To find the value of \[{{n}^{th}}\] derivative of the function \[f(x)\] with respect to \[x\] , we will differentiate the function \[f(x)\] \[n\] times with respect to \[x\] .
On differentiating the function \[n\] times with respect to \[x\], we will get,
\[\dfrac{{{d}^{n}}}{d{{x}^{n}}}f(x)=\left| \begin{matrix}
\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{x}^{n}} & n! & 2 \\
\dfrac{{{d}^{n}}}{d{{x}^{n}}}\cos x & \cos \dfrac{n\pi }{2} & 4 \\
\dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin x & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\]
Now, we need to find the values of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{x}^{n}}\] , \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\cos x\] and \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin x\] .
First , we will find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{x}^{n}}\] .
We know , \[\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}};\dfrac{{{d}^{2}}}{d{{x}^{2}}}{{x}^{n}}=(n)(n-1){{x}^{n-2}};\dfrac{{{d}^{3}}}{d{{x}^{3}}}{{x}^{n}}=(n)(n-1)(n-2){{x}^{n-3}}\] and so on.
On following the pattern , we can conclude: \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{x}^{n}}=(n)(n-1)(n-2)(n-3).....1=n!\] .
Now , we will find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\cos x\] .
We know,
\[\dfrac{d}{dx}\cos x=-\sin x=\cos \left( \dfrac{\pi }{2}+x \right);\dfrac{{{d}^{2}}}{d{{x}^{2}}}\cos x=-\cos x=\cos \left( \dfrac{2\pi }{2}+x \right);\dfrac{{{d}^{3}}}{d{{x}^{3}}}\cos x=\sin x=\cos \left( \dfrac{3\pi }{2}+x \right)\] and so on.
On following the pattern, we can conclude: \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\cos x=\cos \left( \dfrac{n\pi }{2}+x \right)\] .
Now , we will find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin x\].
We know ,
\[\dfrac{d}{dx}\sin x=\cos x=\sin \left( \dfrac{\pi }{2}+x \right);\dfrac{{{d}^{2}}}{d{{x}^{2}}}\sin x=-\sin x=\sin \left( \dfrac{2\pi }{2}+x \right);\dfrac{{{d}^{3}}}{d{{x}^{3}}}\sin x=-\cos x=\sin \left( \dfrac{3\pi }{2}+x \right)\] and so on.
On following the pattern, we can conclude: \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin x=\sin \left( \dfrac{n\pi }{2}+x \right)\] .
Substituting these values in \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}f(x)\] , we get,
\[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\left[ f(x) \right]=\left| \begin{matrix}
n! & n! & 2 \\
\cos \left( \dfrac{n\pi }{2}+x \right) & \cos \dfrac{n\pi }{2} & 4 \\
\sin \left( \dfrac{n\pi }{2}+x \right) & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\] .
Now , to find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}\] , we will substitute \[x=0\] in \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}f(x)\] .
So, \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}=\left| \begin{matrix}
n! & n! & 2 \\
\cos \left( \dfrac{n\pi }{2} \right) & \cos \dfrac{n\pi }{2} & 4 \\
\sin \left( \dfrac{n\pi }{2} \right) & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\]
Clearly , we can see that the two columns in the determinant are the same. Hence , the value of the determinant is zero.
So, \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}=0\].
Note: While finding the value of \[{{n}^{th}}\] derivative of \[\sin x\] and \[\cos x\] with respect to \[x\] , be careful of the sign convention. Students generally make mistakes in the sign and end up getting a wrong answer.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

