
If \[f(x)=\left| \begin{matrix}
{{x}^{n}} & n! & 2 \\
\cos x & \cos \dfrac{n\pi }{2} & 4 \\
\sin x & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\] , then find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}\] .
Answer
516k+ views
Hint:The value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\left| \begin{matrix}
f(x) & {{a}_{1}} & {{a}_{2}} \\
g(x) & {{b}_{1}} & {{b}_{2}} \\
h(x) & {{c}_{1}} & {{c}_{2}} \\
\end{matrix} \right|\] where \[{{a}_{1}},{{a}_{2}},{{b}_{1}},{{b}_{2}},{{c}_{1}}\] and \[{{c}_{2}}\] are constant and is equal to\[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\left| \begin{matrix}
\dfrac{{{d}^{n}}}{d{{x}^{n}}}f(x) & {{a}_{1}} & {{a}_{2}} \\
\dfrac{{{d}^{n}}}{d{{x}^{n}}}g(x) & {{b}_{1}} & {{b}_{2}} \\
\dfrac{{{d}^{n}}}{d{{x}^{n}}}h(x) & {{c}_{1}} & {{c}_{2}} \\
\end{matrix} \right|\] .
Complete step-by-step answer:
We are given the determinant\[f(x)=\left| \begin{matrix}
{{x}^{n}} & n! & 2 \\
\cos x & \cos \dfrac{n\pi }{2} & 4 \\
\sin x & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\] .
We need to find the value of \[{{n}^{th}}\] derivative of the function \[f(x)\] with respect to \[x\] at \[x=0\], i.e. we need to find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}\] .
First , we will find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\left[ f(x) \right]\] , i.e. the value of \[{{n}^{th}}\] derivative of the function \[f(x)\] with respect to \[x\] . To find the value of \[{{n}^{th}}\] derivative of the function \[f(x)\] with respect to \[x\] , we will differentiate the function \[f(x)\] \[n\] times with respect to \[x\] .
On differentiating the function \[n\] times with respect to \[x\], we will get,
\[\dfrac{{{d}^{n}}}{d{{x}^{n}}}f(x)=\left| \begin{matrix}
\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{x}^{n}} & n! & 2 \\
\dfrac{{{d}^{n}}}{d{{x}^{n}}}\cos x & \cos \dfrac{n\pi }{2} & 4 \\
\dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin x & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\]
Now, we need to find the values of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{x}^{n}}\] , \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\cos x\] and \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin x\] .
First , we will find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{x}^{n}}\] .
We know , \[\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}};\dfrac{{{d}^{2}}}{d{{x}^{2}}}{{x}^{n}}=(n)(n-1){{x}^{n-2}};\dfrac{{{d}^{3}}}{d{{x}^{3}}}{{x}^{n}}=(n)(n-1)(n-2){{x}^{n-3}}\] and so on.
On following the pattern , we can conclude: \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{x}^{n}}=(n)(n-1)(n-2)(n-3).....1=n!\] .
Now , we will find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\cos x\] .
We know,
\[\dfrac{d}{dx}\cos x=-\sin x=\cos \left( \dfrac{\pi }{2}+x \right);\dfrac{{{d}^{2}}}{d{{x}^{2}}}\cos x=-\cos x=\cos \left( \dfrac{2\pi }{2}+x \right);\dfrac{{{d}^{3}}}{d{{x}^{3}}}\cos x=\sin x=\cos \left( \dfrac{3\pi }{2}+x \right)\] and so on.
On following the pattern, we can conclude: \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\cos x=\cos \left( \dfrac{n\pi }{2}+x \right)\] .
Now , we will find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin x\].
We know ,
\[\dfrac{d}{dx}\sin x=\cos x=\sin \left( \dfrac{\pi }{2}+x \right);\dfrac{{{d}^{2}}}{d{{x}^{2}}}\sin x=-\sin x=\sin \left( \dfrac{2\pi }{2}+x \right);\dfrac{{{d}^{3}}}{d{{x}^{3}}}\sin x=-\cos x=\sin \left( \dfrac{3\pi }{2}+x \right)\] and so on.
On following the pattern, we can conclude: \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin x=\sin \left( \dfrac{n\pi }{2}+x \right)\] .
Substituting these values in \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}f(x)\] , we get,
\[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\left[ f(x) \right]=\left| \begin{matrix}
n! & n! & 2 \\
\cos \left( \dfrac{n\pi }{2}+x \right) & \cos \dfrac{n\pi }{2} & 4 \\
\sin \left( \dfrac{n\pi }{2}+x \right) & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\] .
Now , to find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}\] , we will substitute \[x=0\] in \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}f(x)\] .
So, \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}=\left| \begin{matrix}
n! & n! & 2 \\
\cos \left( \dfrac{n\pi }{2} \right) & \cos \dfrac{n\pi }{2} & 4 \\
\sin \left( \dfrac{n\pi }{2} \right) & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\]
Clearly , we can see that the two columns in the determinant are the same. Hence , the value of the determinant is zero.
So, \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}=0\].
Note: While finding the value of \[{{n}^{th}}\] derivative of \[\sin x\] and \[\cos x\] with respect to \[x\] , be careful of the sign convention. Students generally make mistakes in the sign and end up getting a wrong answer.
f(x) & {{a}_{1}} & {{a}_{2}} \\
g(x) & {{b}_{1}} & {{b}_{2}} \\
h(x) & {{c}_{1}} & {{c}_{2}} \\
\end{matrix} \right|\] where \[{{a}_{1}},{{a}_{2}},{{b}_{1}},{{b}_{2}},{{c}_{1}}\] and \[{{c}_{2}}\] are constant and is equal to\[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\left| \begin{matrix}
\dfrac{{{d}^{n}}}{d{{x}^{n}}}f(x) & {{a}_{1}} & {{a}_{2}} \\
\dfrac{{{d}^{n}}}{d{{x}^{n}}}g(x) & {{b}_{1}} & {{b}_{2}} \\
\dfrac{{{d}^{n}}}{d{{x}^{n}}}h(x) & {{c}_{1}} & {{c}_{2}} \\
\end{matrix} \right|\] .
Complete step-by-step answer:
We are given the determinant\[f(x)=\left| \begin{matrix}
{{x}^{n}} & n! & 2 \\
\cos x & \cos \dfrac{n\pi }{2} & 4 \\
\sin x & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\] .
We need to find the value of \[{{n}^{th}}\] derivative of the function \[f(x)\] with respect to \[x\] at \[x=0\], i.e. we need to find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}\] .
First , we will find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\left[ f(x) \right]\] , i.e. the value of \[{{n}^{th}}\] derivative of the function \[f(x)\] with respect to \[x\] . To find the value of \[{{n}^{th}}\] derivative of the function \[f(x)\] with respect to \[x\] , we will differentiate the function \[f(x)\] \[n\] times with respect to \[x\] .
On differentiating the function \[n\] times with respect to \[x\], we will get,
\[\dfrac{{{d}^{n}}}{d{{x}^{n}}}f(x)=\left| \begin{matrix}
\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{x}^{n}} & n! & 2 \\
\dfrac{{{d}^{n}}}{d{{x}^{n}}}\cos x & \cos \dfrac{n\pi }{2} & 4 \\
\dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin x & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\]
Now, we need to find the values of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{x}^{n}}\] , \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\cos x\] and \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin x\] .
First , we will find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{x}^{n}}\] .
We know , \[\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}};\dfrac{{{d}^{2}}}{d{{x}^{2}}}{{x}^{n}}=(n)(n-1){{x}^{n-2}};\dfrac{{{d}^{3}}}{d{{x}^{3}}}{{x}^{n}}=(n)(n-1)(n-2){{x}^{n-3}}\] and so on.
On following the pattern , we can conclude: \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{x}^{n}}=(n)(n-1)(n-2)(n-3).....1=n!\] .
Now , we will find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\cos x\] .
We know,
\[\dfrac{d}{dx}\cos x=-\sin x=\cos \left( \dfrac{\pi }{2}+x \right);\dfrac{{{d}^{2}}}{d{{x}^{2}}}\cos x=-\cos x=\cos \left( \dfrac{2\pi }{2}+x \right);\dfrac{{{d}^{3}}}{d{{x}^{3}}}\cos x=\sin x=\cos \left( \dfrac{3\pi }{2}+x \right)\] and so on.
On following the pattern, we can conclude: \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\cos x=\cos \left( \dfrac{n\pi }{2}+x \right)\] .
Now , we will find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin x\].
We know ,
\[\dfrac{d}{dx}\sin x=\cos x=\sin \left( \dfrac{\pi }{2}+x \right);\dfrac{{{d}^{2}}}{d{{x}^{2}}}\sin x=-\sin x=\sin \left( \dfrac{2\pi }{2}+x \right);\dfrac{{{d}^{3}}}{d{{x}^{3}}}\sin x=-\cos x=\sin \left( \dfrac{3\pi }{2}+x \right)\] and so on.
On following the pattern, we can conclude: \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin x=\sin \left( \dfrac{n\pi }{2}+x \right)\] .
Substituting these values in \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}f(x)\] , we get,
\[\dfrac{{{d}^{n}}}{d{{x}^{n}}}\left[ f(x) \right]=\left| \begin{matrix}
n! & n! & 2 \\
\cos \left( \dfrac{n\pi }{2}+x \right) & \cos \dfrac{n\pi }{2} & 4 \\
\sin \left( \dfrac{n\pi }{2}+x \right) & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\] .
Now , to find the value of \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}\] , we will substitute \[x=0\] in \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}f(x)\] .
So, \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}=\left| \begin{matrix}
n! & n! & 2 \\
\cos \left( \dfrac{n\pi }{2} \right) & \cos \dfrac{n\pi }{2} & 4 \\
\sin \left( \dfrac{n\pi }{2} \right) & \sin \dfrac{n\pi }{2} & 8 \\
\end{matrix} \right|\]
Clearly , we can see that the two columns in the determinant are the same. Hence , the value of the determinant is zero.
So, \[\dfrac{{{d}^{n}}}{d{{x}^{n}}}{{\left[ f(x) \right]}_{x=0}}=0\].
Note: While finding the value of \[{{n}^{th}}\] derivative of \[\sin x\] and \[\cos x\] with respect to \[x\] , be careful of the sign convention. Students generally make mistakes in the sign and end up getting a wrong answer.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
