
If $f(x)=2x-6$, then ${{f}^{-1}}(x)$ is:
$6-2x$
A.$\dfrac{1}{2}x-6$
B.$\dfrac{1}{2}x-3$
C.$\dfrac{1}{2}x+3$
D.$\dfrac{1}{2}x+6$
Answer
609.3k+ views
Hint: A function from X to Y is a rule or correspondence that assigns to each element of set Y, one and only one element of set Y. If a function is both one-one and onto then there exists a unique function which is known as the inverse of a given function. Using this methodology, we can solve the given problem.
Complete step by step answer:
Functions can be easily defined with the help of the concept of mapping. Let X and Y be any two non-empty sets. A function from X to Y is a rule or correspondence that assigns to each element of set Y, one and only one element of set Y. Mathematically we write: $f:X\to Y$ where $y=f(x),x\in X\text{ and }y\in Y$. Every element in set X should have one and only one image. Set X is called the domain of the function ‘f’ and set Y is called the codomain of the function ‘f’.
Let $f:X\to Y$ be a function defined by $y=f(x)$ such that f is both one-one and onto. Then there exists a unique function $g:Y\to X$ such that for each $y\in Y$.
$g(y)=x\Leftrightarrow y=f(x).$
The function g is called the inverse of f.
As per our problem, we are given $f(x)=2x-6$. Since, f(x) is one-one and onto, it is invertible.
Also, we know that $f({{f}^{-1}}(x))=x$
$\begin{align}
& \therefore 2{{f}^{-1}}(x)-6=x \\
& 2{{f}^{-1}}(x)=x+6 \\
& {{f}^{-1}}(x)=\dfrac{x+6}{2} \\
& {{f}^{-1}}(x)=\dfrac{x}{2}+3 \\
\end{align}$
Therefore, option (b) is correct.
Note: The key step for solving this problem is the knowledge of the inverse of a function. First, we must know conclusively that the function is one-one and onto. If a function is not one-one or onto, then its inverse is not possible. Hence, after this we proceed by using $f({{f}^{-1}}(x))=x$.
Complete step by step answer:
Functions can be easily defined with the help of the concept of mapping. Let X and Y be any two non-empty sets. A function from X to Y is a rule or correspondence that assigns to each element of set Y, one and only one element of set Y. Mathematically we write: $f:X\to Y$ where $y=f(x),x\in X\text{ and }y\in Y$. Every element in set X should have one and only one image. Set X is called the domain of the function ‘f’ and set Y is called the codomain of the function ‘f’.
Let $f:X\to Y$ be a function defined by $y=f(x)$ such that f is both one-one and onto. Then there exists a unique function $g:Y\to X$ such that for each $y\in Y$.
$g(y)=x\Leftrightarrow y=f(x).$
The function g is called the inverse of f.
As per our problem, we are given $f(x)=2x-6$. Since, f(x) is one-one and onto, it is invertible.
Also, we know that $f({{f}^{-1}}(x))=x$
$\begin{align}
& \therefore 2{{f}^{-1}}(x)-6=x \\
& 2{{f}^{-1}}(x)=x+6 \\
& {{f}^{-1}}(x)=\dfrac{x+6}{2} \\
& {{f}^{-1}}(x)=\dfrac{x}{2}+3 \\
\end{align}$
Therefore, option (b) is correct.
Note: The key step for solving this problem is the knowledge of the inverse of a function. First, we must know conclusively that the function is one-one and onto. If a function is not one-one or onto, then its inverse is not possible. Hence, after this we proceed by using $f({{f}^{-1}}(x))=x$.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

