
If $f(x) = \sqrt {25 - {x^2}} $ , then what is $\mathop {\lim }\limits_{x \to 1} \dfrac{{f(x) - f(1)}}{{x - 1}}$ equal to?
A. $\dfrac{1}{5}$
B. $\dfrac{1}{{24}}$
C. $\sqrt {24} $
D. $ - \dfrac{1}{{\sqrt {24} }}$
Answer
468k+ views
Hint: To solve this question we need to understand the concept of limit and differentiability. Here we use the differentiability at a point.
The function \[f(x)\] is said to be differentiable at the point \[x\; = \;a\;\] if the derivative \[f'(a)\;\] exists at every point in its domain. It is given by
\[f'(a)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(a)}}{{x - a}} \ldots (1)\]
If $f(x) = \sqrt {25 - {x^2}} $and \[\;a = 1\;\]then, from equation $(1)$ we get,
$\mathop {\lim }\limits_{x \to 1} \dfrac{{f(x) - f(1)}}{{x - 1}} = f'(1)$
We have to find the derivative of $f(x) = \sqrt {25 - {x^2}} $ at point \[\;a = 1\;\].
Use the formulas of derivative;
$\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}$
$\dfrac{d}{{dx}}(\sqrt x ) = \dfrac{1}{{2\sqrt x }}$
The value of $f'(1)$ is the required solution.
Complete step-by-step answer:
Given the function, $f(x) = \sqrt {25 - {x^2}} $ and use the differentiability at a point.
The function \[f(x)\] is said to be differentiable at the point \[x\; = \;a\;\] if the derivative \[f'(a)\;\] exists at every point in its domain. It is given by
\[f'(a)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(a)}}{{x - a}} \ldots (1)\]
Substitute \[\;a = 1\;\]into the equation $(1)$.
\[f'(1)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(1)}}{{x - 1}}\]
$\therefore $ Evaluate first order derivative of $f(x) = \sqrt {25 - {x^2}} $at point$1$.
$\dfrac{{d(\sqrt {25 - {x^2}} )}}{{dx}} = \dfrac{1}{{2\sqrt {25 - {x^2}} }}\dfrac{d}{{dx}}(25 - {x^2})$
$ \Rightarrow \dfrac{{d(\sqrt {25 - {x^2}} )}}{{dx}} = \dfrac{1}{{2\sqrt {25 - {x^2}} }}( - 2x)$
$ \Rightarrow \dfrac{{d(\sqrt {25 - {x^2}} )}}{{dx}} = - \dfrac{x}{{\sqrt {25 - {x^2}} }}$
$ \Rightarrow f'(x) = - \dfrac{x}{{\sqrt {25 - {x^2}} }}$
The value of $f'(1)$ is the required solution so, substitute $x = 1$ into $f'(x)$.
$ \Rightarrow f'(1) = - \dfrac{1}{{\sqrt {25 - {1^2}} }}$
$ \Rightarrow f'(1) = - \dfrac{1}{{\sqrt {24} }}$
Correct Answer: D. $ - \dfrac{1}{{\sqrt {24} }}$
Note:
Most important step is to compare $\mathop {\lim }\limits_{x \to 1} \dfrac{{f(x) - f(1)}}{{x - 1}}$ with the formula of differentiability \[f'(a)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(a)}}{{x - a}}\] and find $f'(1)$.
Here are the formulas of derivative given below,
$\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}$
$\dfrac{d}{{dx}}(\sqrt x ) = \dfrac{1}{{2\sqrt x }}$
$\dfrac{d}{{dx}}{e^x} = {e^x}$
$\dfrac{d}{{dx}}\left( {\dfrac{1}{x}} \right) = \log x$
The function \[f(x)\] is said to be differentiable at the point \[x\; = \;a\;\] if the derivative \[f'(a)\;\] exists at every point in its domain. It is given by
\[f'(a)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(a)}}{{x - a}} \ldots (1)\]
If $f(x) = \sqrt {25 - {x^2}} $and \[\;a = 1\;\]then, from equation $(1)$ we get,
$\mathop {\lim }\limits_{x \to 1} \dfrac{{f(x) - f(1)}}{{x - 1}} = f'(1)$
We have to find the derivative of $f(x) = \sqrt {25 - {x^2}} $ at point \[\;a = 1\;\].
Use the formulas of derivative;
$\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}$
$\dfrac{d}{{dx}}(\sqrt x ) = \dfrac{1}{{2\sqrt x }}$
The value of $f'(1)$ is the required solution.
Complete step-by-step answer:
Given the function, $f(x) = \sqrt {25 - {x^2}} $ and use the differentiability at a point.
The function \[f(x)\] is said to be differentiable at the point \[x\; = \;a\;\] if the derivative \[f'(a)\;\] exists at every point in its domain. It is given by
\[f'(a)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(a)}}{{x - a}} \ldots (1)\]
Substitute \[\;a = 1\;\]into the equation $(1)$.
\[f'(1)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(1)}}{{x - 1}}\]
$\therefore $ Evaluate first order derivative of $f(x) = \sqrt {25 - {x^2}} $at point$1$.
$\dfrac{{d(\sqrt {25 - {x^2}} )}}{{dx}} = \dfrac{1}{{2\sqrt {25 - {x^2}} }}\dfrac{d}{{dx}}(25 - {x^2})$
$ \Rightarrow \dfrac{{d(\sqrt {25 - {x^2}} )}}{{dx}} = \dfrac{1}{{2\sqrt {25 - {x^2}} }}( - 2x)$
$ \Rightarrow \dfrac{{d(\sqrt {25 - {x^2}} )}}{{dx}} = - \dfrac{x}{{\sqrt {25 - {x^2}} }}$
$ \Rightarrow f'(x) = - \dfrac{x}{{\sqrt {25 - {x^2}} }}$
The value of $f'(1)$ is the required solution so, substitute $x = 1$ into $f'(x)$.
$ \Rightarrow f'(1) = - \dfrac{1}{{\sqrt {25 - {1^2}} }}$
$ \Rightarrow f'(1) = - \dfrac{1}{{\sqrt {24} }}$
Correct Answer: D. $ - \dfrac{1}{{\sqrt {24} }}$
Note:
Most important step is to compare $\mathop {\lim }\limits_{x \to 1} \dfrac{{f(x) - f(1)}}{{x - 1}}$ with the formula of differentiability \[f'(a)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(a)}}{{x - a}}\] and find $f'(1)$.
Here are the formulas of derivative given below,
$\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}$
$\dfrac{d}{{dx}}(\sqrt x ) = \dfrac{1}{{2\sqrt x }}$
$\dfrac{d}{{dx}}{e^x} = {e^x}$
$\dfrac{d}{{dx}}\left( {\dfrac{1}{x}} \right) = \log x$
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What I want should not be confused with total inactivity class 12 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
