
If $f(x) = \sqrt {25 - {x^2}} $ , then what is $\mathop {\lim }\limits_{x \to 1} \dfrac{{f(x) - f(1)}}{{x - 1}}$ equal to?
A. $\dfrac{1}{5}$
B. $\dfrac{1}{{24}}$
C. $\sqrt {24} $
D. $ - \dfrac{1}{{\sqrt {24} }}$
Answer
549.9k+ views
Hint: To solve this question we need to understand the concept of limit and differentiability. Here we use the differentiability at a point.
The function \[f(x)\] is said to be differentiable at the point \[x\; = \;a\;\] if the derivative \[f'(a)\;\] exists at every point in its domain. It is given by
\[f'(a)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(a)}}{{x - a}} \ldots (1)\]
If $f(x) = \sqrt {25 - {x^2}} $and \[\;a = 1\;\]then, from equation $(1)$ we get,
$\mathop {\lim }\limits_{x \to 1} \dfrac{{f(x) - f(1)}}{{x - 1}} = f'(1)$
We have to find the derivative of $f(x) = \sqrt {25 - {x^2}} $ at point \[\;a = 1\;\].
Use the formulas of derivative;
$\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}$
$\dfrac{d}{{dx}}(\sqrt x ) = \dfrac{1}{{2\sqrt x }}$
The value of $f'(1)$ is the required solution.
Complete step-by-step answer:
Given the function, $f(x) = \sqrt {25 - {x^2}} $ and use the differentiability at a point.
The function \[f(x)\] is said to be differentiable at the point \[x\; = \;a\;\] if the derivative \[f'(a)\;\] exists at every point in its domain. It is given by
\[f'(a)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(a)}}{{x - a}} \ldots (1)\]
Substitute \[\;a = 1\;\]into the equation $(1)$.
\[f'(1)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(1)}}{{x - 1}}\]
$\therefore $ Evaluate first order derivative of $f(x) = \sqrt {25 - {x^2}} $at point$1$.
$\dfrac{{d(\sqrt {25 - {x^2}} )}}{{dx}} = \dfrac{1}{{2\sqrt {25 - {x^2}} }}\dfrac{d}{{dx}}(25 - {x^2})$
$ \Rightarrow \dfrac{{d(\sqrt {25 - {x^2}} )}}{{dx}} = \dfrac{1}{{2\sqrt {25 - {x^2}} }}( - 2x)$
$ \Rightarrow \dfrac{{d(\sqrt {25 - {x^2}} )}}{{dx}} = - \dfrac{x}{{\sqrt {25 - {x^2}} }}$
$ \Rightarrow f'(x) = - \dfrac{x}{{\sqrt {25 - {x^2}} }}$
The value of $f'(1)$ is the required solution so, substitute $x = 1$ into $f'(x)$.
$ \Rightarrow f'(1) = - \dfrac{1}{{\sqrt {25 - {1^2}} }}$
$ \Rightarrow f'(1) = - \dfrac{1}{{\sqrt {24} }}$
Correct Answer: D. $ - \dfrac{1}{{\sqrt {24} }}$
Note:
Most important step is to compare $\mathop {\lim }\limits_{x \to 1} \dfrac{{f(x) - f(1)}}{{x - 1}}$ with the formula of differentiability \[f'(a)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(a)}}{{x - a}}\] and find $f'(1)$.
Here are the formulas of derivative given below,
$\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}$
$\dfrac{d}{{dx}}(\sqrt x ) = \dfrac{1}{{2\sqrt x }}$
$\dfrac{d}{{dx}}{e^x} = {e^x}$
$\dfrac{d}{{dx}}\left( {\dfrac{1}{x}} \right) = \log x$
The function \[f(x)\] is said to be differentiable at the point \[x\; = \;a\;\] if the derivative \[f'(a)\;\] exists at every point in its domain. It is given by
\[f'(a)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(a)}}{{x - a}} \ldots (1)\]
If $f(x) = \sqrt {25 - {x^2}} $and \[\;a = 1\;\]then, from equation $(1)$ we get,
$\mathop {\lim }\limits_{x \to 1} \dfrac{{f(x) - f(1)}}{{x - 1}} = f'(1)$
We have to find the derivative of $f(x) = \sqrt {25 - {x^2}} $ at point \[\;a = 1\;\].
Use the formulas of derivative;
$\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}$
$\dfrac{d}{{dx}}(\sqrt x ) = \dfrac{1}{{2\sqrt x }}$
The value of $f'(1)$ is the required solution.
Complete step-by-step answer:
Given the function, $f(x) = \sqrt {25 - {x^2}} $ and use the differentiability at a point.
The function \[f(x)\] is said to be differentiable at the point \[x\; = \;a\;\] if the derivative \[f'(a)\;\] exists at every point in its domain. It is given by
\[f'(a)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(a)}}{{x - a}} \ldots (1)\]
Substitute \[\;a = 1\;\]into the equation $(1)$.
\[f'(1)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(1)}}{{x - 1}}\]
$\therefore $ Evaluate first order derivative of $f(x) = \sqrt {25 - {x^2}} $at point$1$.
$\dfrac{{d(\sqrt {25 - {x^2}} )}}{{dx}} = \dfrac{1}{{2\sqrt {25 - {x^2}} }}\dfrac{d}{{dx}}(25 - {x^2})$
$ \Rightarrow \dfrac{{d(\sqrt {25 - {x^2}} )}}{{dx}} = \dfrac{1}{{2\sqrt {25 - {x^2}} }}( - 2x)$
$ \Rightarrow \dfrac{{d(\sqrt {25 - {x^2}} )}}{{dx}} = - \dfrac{x}{{\sqrt {25 - {x^2}} }}$
$ \Rightarrow f'(x) = - \dfrac{x}{{\sqrt {25 - {x^2}} }}$
The value of $f'(1)$ is the required solution so, substitute $x = 1$ into $f'(x)$.
$ \Rightarrow f'(1) = - \dfrac{1}{{\sqrt {25 - {1^2}} }}$
$ \Rightarrow f'(1) = - \dfrac{1}{{\sqrt {24} }}$
Correct Answer: D. $ - \dfrac{1}{{\sqrt {24} }}$
Note:
Most important step is to compare $\mathop {\lim }\limits_{x \to 1} \dfrac{{f(x) - f(1)}}{{x - 1}}$ with the formula of differentiability \[f'(a)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(a)}}{{x - a}}\] and find $f'(1)$.
Here are the formulas of derivative given below,
$\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}$
$\dfrac{d}{{dx}}(\sqrt x ) = \dfrac{1}{{2\sqrt x }}$
$\dfrac{d}{{dx}}{e^x} = {e^x}$
$\dfrac{d}{{dx}}\left( {\dfrac{1}{x}} \right) = \log x$
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

