
If $f(x) = \sqrt {25 - {x^2}} $ , then what is $\mathop {\lim }\limits_{x \to 1} \dfrac{{f(x) - f(1)}}{{x - 1}}$ equal to?
A. $\dfrac{1}{5}$
B. $\dfrac{1}{{24}}$
C. $\sqrt {24} $
D. $ - \dfrac{1}{{\sqrt {24} }}$
Answer
564.6k+ views
Hint: To solve this question we need to understand the concept of limit and differentiability. Here we use the differentiability at a point.
The function \[f(x)\] is said to be differentiable at the point \[x\; = \;a\;\] if the derivative \[f'(a)\;\] exists at every point in its domain. It is given by
\[f'(a)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(a)}}{{x - a}} \ldots (1)\]
If $f(x) = \sqrt {25 - {x^2}} $and \[\;a = 1\;\]then, from equation $(1)$ we get,
$\mathop {\lim }\limits_{x \to 1} \dfrac{{f(x) - f(1)}}{{x - 1}} = f'(1)$
We have to find the derivative of $f(x) = \sqrt {25 - {x^2}} $ at point \[\;a = 1\;\].
Use the formulas of derivative;
$\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}$
$\dfrac{d}{{dx}}(\sqrt x ) = \dfrac{1}{{2\sqrt x }}$
The value of $f'(1)$ is the required solution.
Complete step-by-step answer:
Given the function, $f(x) = \sqrt {25 - {x^2}} $ and use the differentiability at a point.
The function \[f(x)\] is said to be differentiable at the point \[x\; = \;a\;\] if the derivative \[f'(a)\;\] exists at every point in its domain. It is given by
\[f'(a)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(a)}}{{x - a}} \ldots (1)\]
Substitute \[\;a = 1\;\]into the equation $(1)$.
\[f'(1)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(1)}}{{x - 1}}\]
$\therefore $ Evaluate first order derivative of $f(x) = \sqrt {25 - {x^2}} $at point$1$.
$\dfrac{{d(\sqrt {25 - {x^2}} )}}{{dx}} = \dfrac{1}{{2\sqrt {25 - {x^2}} }}\dfrac{d}{{dx}}(25 - {x^2})$
$ \Rightarrow \dfrac{{d(\sqrt {25 - {x^2}} )}}{{dx}} = \dfrac{1}{{2\sqrt {25 - {x^2}} }}( - 2x)$
$ \Rightarrow \dfrac{{d(\sqrt {25 - {x^2}} )}}{{dx}} = - \dfrac{x}{{\sqrt {25 - {x^2}} }}$
$ \Rightarrow f'(x) = - \dfrac{x}{{\sqrt {25 - {x^2}} }}$
The value of $f'(1)$ is the required solution so, substitute $x = 1$ into $f'(x)$.
$ \Rightarrow f'(1) = - \dfrac{1}{{\sqrt {25 - {1^2}} }}$
$ \Rightarrow f'(1) = - \dfrac{1}{{\sqrt {24} }}$
Correct Answer: D. $ - \dfrac{1}{{\sqrt {24} }}$
Note:
Most important step is to compare $\mathop {\lim }\limits_{x \to 1} \dfrac{{f(x) - f(1)}}{{x - 1}}$ with the formula of differentiability \[f'(a)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(a)}}{{x - a}}\] and find $f'(1)$.
Here are the formulas of derivative given below,
$\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}$
$\dfrac{d}{{dx}}(\sqrt x ) = \dfrac{1}{{2\sqrt x }}$
$\dfrac{d}{{dx}}{e^x} = {e^x}$
$\dfrac{d}{{dx}}\left( {\dfrac{1}{x}} \right) = \log x$
The function \[f(x)\] is said to be differentiable at the point \[x\; = \;a\;\] if the derivative \[f'(a)\;\] exists at every point in its domain. It is given by
\[f'(a)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(a)}}{{x - a}} \ldots (1)\]
If $f(x) = \sqrt {25 - {x^2}} $and \[\;a = 1\;\]then, from equation $(1)$ we get,
$\mathop {\lim }\limits_{x \to 1} \dfrac{{f(x) - f(1)}}{{x - 1}} = f'(1)$
We have to find the derivative of $f(x) = \sqrt {25 - {x^2}} $ at point \[\;a = 1\;\].
Use the formulas of derivative;
$\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}$
$\dfrac{d}{{dx}}(\sqrt x ) = \dfrac{1}{{2\sqrt x }}$
The value of $f'(1)$ is the required solution.
Complete step-by-step answer:
Given the function, $f(x) = \sqrt {25 - {x^2}} $ and use the differentiability at a point.
The function \[f(x)\] is said to be differentiable at the point \[x\; = \;a\;\] if the derivative \[f'(a)\;\] exists at every point in its domain. It is given by
\[f'(a)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(a)}}{{x - a}} \ldots (1)\]
Substitute \[\;a = 1\;\]into the equation $(1)$.
\[f'(1)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(1)}}{{x - 1}}\]
$\therefore $ Evaluate first order derivative of $f(x) = \sqrt {25 - {x^2}} $at point$1$.
$\dfrac{{d(\sqrt {25 - {x^2}} )}}{{dx}} = \dfrac{1}{{2\sqrt {25 - {x^2}} }}\dfrac{d}{{dx}}(25 - {x^2})$
$ \Rightarrow \dfrac{{d(\sqrt {25 - {x^2}} )}}{{dx}} = \dfrac{1}{{2\sqrt {25 - {x^2}} }}( - 2x)$
$ \Rightarrow \dfrac{{d(\sqrt {25 - {x^2}} )}}{{dx}} = - \dfrac{x}{{\sqrt {25 - {x^2}} }}$
$ \Rightarrow f'(x) = - \dfrac{x}{{\sqrt {25 - {x^2}} }}$
The value of $f'(1)$ is the required solution so, substitute $x = 1$ into $f'(x)$.
$ \Rightarrow f'(1) = - \dfrac{1}{{\sqrt {25 - {1^2}} }}$
$ \Rightarrow f'(1) = - \dfrac{1}{{\sqrt {24} }}$
Correct Answer: D. $ - \dfrac{1}{{\sqrt {24} }}$
Note:
Most important step is to compare $\mathop {\lim }\limits_{x \to 1} \dfrac{{f(x) - f(1)}}{{x - 1}}$ with the formula of differentiability \[f'(a)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(a)}}{{x - a}}\] and find $f'(1)$.
Here are the formulas of derivative given below,
$\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}$
$\dfrac{d}{{dx}}(\sqrt x ) = \dfrac{1}{{2\sqrt x }}$
$\dfrac{d}{{dx}}{e^x} = {e^x}$
$\dfrac{d}{{dx}}\left( {\dfrac{1}{x}} \right) = \log x$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

