
If $f(x) = \dfrac{{{e^{\dfrac{1}{x}}} - 1}}{{{e^{\dfrac{1}{x}}} + 1}},x \ne 0{\text{ and f}}\left( 0 \right) = 0$, then $f(x)$ is
(a) Continuous at $0$
(b) Right continuous at $0$
(c) Discontinuous at $0$
(d) Left continuous at $0$
Answer
535.8k+ views
Hint- Calculate left hand and right hand limit at the required point where continuity is asked.
We have to comment upon the continuity of $f(x) = \dfrac{{{e^{\dfrac{1}{x}}} - 1}}{{{e^{\dfrac{1}{x}}} + 1}},x \ne 0{\text{ }}$at x=0
Let’s calculate the left hand side limit for this $f(x)$
$ \Rightarrow f{(x)_{x \to {0^ - }}} = f{(0 - h)_{h \to 0}} = f{( - h)_{h \to 0}}$
So $f{(x)_{x \to {0^ - }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{\dfrac{{ - 1}}{h}}} - 1}}{{{e^{\dfrac{{ - 1}}{h}}} + 1}}$
We can write this down as
$f{(x)_{x \to {0^ - }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{1}{{{e^{\dfrac{1}{h}}}}} - 1}}{{\dfrac{1}{{{e^{\dfrac{1}{h}}}}} + 1}}$
Now let’s substitute 0 in place of h we get
$f{(x)_{x \to {0^ - }}} = \dfrac{{\dfrac{1}{{{e^{\dfrac{1}{0}}}}} - 1}}{{\dfrac{1}{{{e^{\dfrac{1}{0}}}}} + 1}}$
Now we know that $\dfrac{1}{0} = \infty {\text{ and }}{{\text{e}}^{\dfrac{1}{0}}} = {e^\infty } = \infty $
Putting it above we get
$ \Rightarrow f{(x)_{x \to {0^ - }}} = \dfrac{{\dfrac{1}{\infty } - 1}}{{\dfrac{1}{\infty } + 1}} = \dfrac{{0 - 1}}{{0 + 1}} = - 1$
So the left hand limit is -1, now let’s compute the Right side limit
$ \Rightarrow f{(x)_{x \to {0^ + }}} = f{(0 + h)_{h \to 0}} = f{(h)_{h \to 0}}$
$f{(x)_{x \to {0^ + }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{\dfrac{1}{h}}} - 1}}{{{e^{\dfrac{1}{h}}} + 1}}$
Now we will be taking ${e^{\dfrac{1}{h}}}$ common from the denominator as well as from the numerator
$ \Rightarrow f{(x)_{x \to {0^ + }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - \dfrac{1}{{{e^{\dfrac{1}{h}}}}}}}{{1 + \dfrac{1}{{{e^{\dfrac{1}{h}}}}}}}$
Now let’s substitute 0 in place of h we get
$ \Rightarrow f{(x)_{x \to {0^ + }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - \dfrac{1}{{{e^{\dfrac{1}{0}}}}}}}{{1 + \dfrac{1}{{{e^{\dfrac{1}{0}}}}}}}$
Now we know that $\dfrac{1}{0} = \infty {\text{ and }}{{\text{e}}^{\dfrac{1}{0}}} = {e^\infty } = \infty $ putting it above we get
$ \Rightarrow f{(x)_{x \to {0^ + }}} = \dfrac{{1 - \dfrac{1}{\infty }}}{{1 + \dfrac{1}{\infty }}} = \dfrac{{1 - 0}}{{1 + 0}} = 1$
Now clearly the left hand limit at $x = 0$ is not equal to the right hand limit at $x = 0$. Hence given $f(x)$ is discontinuous at $x = 0$
Hence option (c) is correct
Note- Whenever we are told to comment upon the continuity of a given function at a specific point, approach the point first from left side and then from right side if both the limits are equal and it is equal to the value of the function at that point then the function is continuous at that point.
We have to comment upon the continuity of $f(x) = \dfrac{{{e^{\dfrac{1}{x}}} - 1}}{{{e^{\dfrac{1}{x}}} + 1}},x \ne 0{\text{ }}$at x=0
Let’s calculate the left hand side limit for this $f(x)$
$ \Rightarrow f{(x)_{x \to {0^ - }}} = f{(0 - h)_{h \to 0}} = f{( - h)_{h \to 0}}$
So $f{(x)_{x \to {0^ - }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{\dfrac{{ - 1}}{h}}} - 1}}{{{e^{\dfrac{{ - 1}}{h}}} + 1}}$
We can write this down as
$f{(x)_{x \to {0^ - }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{1}{{{e^{\dfrac{1}{h}}}}} - 1}}{{\dfrac{1}{{{e^{\dfrac{1}{h}}}}} + 1}}$
Now let’s substitute 0 in place of h we get
$f{(x)_{x \to {0^ - }}} = \dfrac{{\dfrac{1}{{{e^{\dfrac{1}{0}}}}} - 1}}{{\dfrac{1}{{{e^{\dfrac{1}{0}}}}} + 1}}$
Now we know that $\dfrac{1}{0} = \infty {\text{ and }}{{\text{e}}^{\dfrac{1}{0}}} = {e^\infty } = \infty $
Putting it above we get
$ \Rightarrow f{(x)_{x \to {0^ - }}} = \dfrac{{\dfrac{1}{\infty } - 1}}{{\dfrac{1}{\infty } + 1}} = \dfrac{{0 - 1}}{{0 + 1}} = - 1$
So the left hand limit is -1, now let’s compute the Right side limit
$ \Rightarrow f{(x)_{x \to {0^ + }}} = f{(0 + h)_{h \to 0}} = f{(h)_{h \to 0}}$
$f{(x)_{x \to {0^ + }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{\dfrac{1}{h}}} - 1}}{{{e^{\dfrac{1}{h}}} + 1}}$
Now we will be taking ${e^{\dfrac{1}{h}}}$ common from the denominator as well as from the numerator
$ \Rightarrow f{(x)_{x \to {0^ + }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - \dfrac{1}{{{e^{\dfrac{1}{h}}}}}}}{{1 + \dfrac{1}{{{e^{\dfrac{1}{h}}}}}}}$
Now let’s substitute 0 in place of h we get
$ \Rightarrow f{(x)_{x \to {0^ + }}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - \dfrac{1}{{{e^{\dfrac{1}{0}}}}}}}{{1 + \dfrac{1}{{{e^{\dfrac{1}{0}}}}}}}$
Now we know that $\dfrac{1}{0} = \infty {\text{ and }}{{\text{e}}^{\dfrac{1}{0}}} = {e^\infty } = \infty $ putting it above we get
$ \Rightarrow f{(x)_{x \to {0^ + }}} = \dfrac{{1 - \dfrac{1}{\infty }}}{{1 + \dfrac{1}{\infty }}} = \dfrac{{1 - 0}}{{1 + 0}} = 1$
Now clearly the left hand limit at $x = 0$ is not equal to the right hand limit at $x = 0$. Hence given $f(x)$ is discontinuous at $x = 0$
Hence option (c) is correct
Note- Whenever we are told to comment upon the continuity of a given function at a specific point, approach the point first from left side and then from right side if both the limits are equal and it is equal to the value of the function at that point then the function is continuous at that point.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
