
If $f\left( x \right) = {\left( {p - {x^n}} \right)^{\dfrac{1}{n}}},p > 0$ and n is a positive integer, then $f\left( {f\left( x \right)} \right)$=?
A. x
B. ${x^n}$
C. ${p^{\dfrac{1}{n}}}$
D. $p - {x^n}$
Answer
476.1k+ views
Hint: Start by writing the given function f(x) and find out $f\left( {f\left( x \right)} \right)$by substituting the value of f(x) in place of x , Simplify the new expression formed by solving the exponents and get the most simplified form , the value obtained is the desired answer.
Complete step-by-step answer:
Given,
$f\left( x \right) = {\left( {p - {x^n}} \right)^{\dfrac{1}{n}}},p > 0$
Let us find out the value of $f\left( {f\left( x \right)} \right)$
Substituting the value of f(x), by replacing the equation f(x) in place of x variable , we get
\[f\left( {f\left( x \right)} \right) = {\left( {p - {{\left( {{{\left( {p - {x^n}} \right)}^{\dfrac{1}{n}}}} \right)}^n}} \right)^{\dfrac{1}{n}}}\]
Here , The inside powers $\dfrac{1}{n}$ and n gets cancelled and on simplification, we have
$
f\left( {f\left( x \right)} \right) = {\left( {p - \left( {p - {x^n}} \right)} \right)^{\dfrac{1}{n}}} \\
\Rightarrow f\left( {f\left( x \right)} \right) = {\left( {p - p + {x^n}} \right)^{\dfrac{1}{n}}} \\
$
So now p will be cancelled out with -p and we are left with
$f\left( {f\left( x \right)} \right) = {\left( {{x^n}} \right)^{\dfrac{1}{n}}}$
Now, Again the powers of n and $\dfrac{1}{n}$ will be cancelled out and hence we have
$f\left( {f\left( x \right)} \right) = x$
So, the correct answer is “Option A”.
Note: Similar questions can be asked with multiple iteration of f(x) ,for .e.g. $f\left[ {f\left( {f\left( x \right)} \right)} \right]$, follow the same procedure as above. Attention must be given while substituting and simplifying as any missed sign or wrong interpretation may lead to wrong answers.
Complete step-by-step answer:
Given,
$f\left( x \right) = {\left( {p - {x^n}} \right)^{\dfrac{1}{n}}},p > 0$
Let us find out the value of $f\left( {f\left( x \right)} \right)$
Substituting the value of f(x), by replacing the equation f(x) in place of x variable , we get
\[f\left( {f\left( x \right)} \right) = {\left( {p - {{\left( {{{\left( {p - {x^n}} \right)}^{\dfrac{1}{n}}}} \right)}^n}} \right)^{\dfrac{1}{n}}}\]
Here , The inside powers $\dfrac{1}{n}$ and n gets cancelled and on simplification, we have
$
f\left( {f\left( x \right)} \right) = {\left( {p - \left( {p - {x^n}} \right)} \right)^{\dfrac{1}{n}}} \\
\Rightarrow f\left( {f\left( x \right)} \right) = {\left( {p - p + {x^n}} \right)^{\dfrac{1}{n}}} \\
$
So now p will be cancelled out with -p and we are left with
$f\left( {f\left( x \right)} \right) = {\left( {{x^n}} \right)^{\dfrac{1}{n}}}$
Now, Again the powers of n and $\dfrac{1}{n}$ will be cancelled out and hence we have
$f\left( {f\left( x \right)} \right) = x$
So, the correct answer is “Option A”.
Note: Similar questions can be asked with multiple iteration of f(x) ,for .e.g. $f\left[ {f\left( {f\left( x \right)} \right)} \right]$, follow the same procedure as above. Attention must be given while substituting and simplifying as any missed sign or wrong interpretation may lead to wrong answers.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
