
If $f\left( x \right) = {\left( {p - {x^n}} \right)^{\dfrac{1}{n}}},p > 0$ and n is a positive integer, then $f\left( {f\left( x \right)} \right)$=?
A. x
B. ${x^n}$
C. ${p^{\dfrac{1}{n}}}$
D. $p - {x^n}$
Answer
583.5k+ views
Hint: Start by writing the given function f(x) and find out $f\left( {f\left( x \right)} \right)$by substituting the value of f(x) in place of x , Simplify the new expression formed by solving the exponents and get the most simplified form , the value obtained is the desired answer.
Complete step-by-step answer:
Given,
$f\left( x \right) = {\left( {p - {x^n}} \right)^{\dfrac{1}{n}}},p > 0$
Let us find out the value of $f\left( {f\left( x \right)} \right)$
Substituting the value of f(x), by replacing the equation f(x) in place of x variable , we get
\[f\left( {f\left( x \right)} \right) = {\left( {p - {{\left( {{{\left( {p - {x^n}} \right)}^{\dfrac{1}{n}}}} \right)}^n}} \right)^{\dfrac{1}{n}}}\]
Here , The inside powers $\dfrac{1}{n}$ and n gets cancelled and on simplification, we have
$
f\left( {f\left( x \right)} \right) = {\left( {p - \left( {p - {x^n}} \right)} \right)^{\dfrac{1}{n}}} \\
\Rightarrow f\left( {f\left( x \right)} \right) = {\left( {p - p + {x^n}} \right)^{\dfrac{1}{n}}} \\
$
So now p will be cancelled out with -p and we are left with
$f\left( {f\left( x \right)} \right) = {\left( {{x^n}} \right)^{\dfrac{1}{n}}}$
Now, Again the powers of n and $\dfrac{1}{n}$ will be cancelled out and hence we have
$f\left( {f\left( x \right)} \right) = x$
So, the correct answer is “Option A”.
Note: Similar questions can be asked with multiple iteration of f(x) ,for .e.g. $f\left[ {f\left( {f\left( x \right)} \right)} \right]$, follow the same procedure as above. Attention must be given while substituting and simplifying as any missed sign or wrong interpretation may lead to wrong answers.
Complete step-by-step answer:
Given,
$f\left( x \right) = {\left( {p - {x^n}} \right)^{\dfrac{1}{n}}},p > 0$
Let us find out the value of $f\left( {f\left( x \right)} \right)$
Substituting the value of f(x), by replacing the equation f(x) in place of x variable , we get
\[f\left( {f\left( x \right)} \right) = {\left( {p - {{\left( {{{\left( {p - {x^n}} \right)}^{\dfrac{1}{n}}}} \right)}^n}} \right)^{\dfrac{1}{n}}}\]
Here , The inside powers $\dfrac{1}{n}$ and n gets cancelled and on simplification, we have
$
f\left( {f\left( x \right)} \right) = {\left( {p - \left( {p - {x^n}} \right)} \right)^{\dfrac{1}{n}}} \\
\Rightarrow f\left( {f\left( x \right)} \right) = {\left( {p - p + {x^n}} \right)^{\dfrac{1}{n}}} \\
$
So now p will be cancelled out with -p and we are left with
$f\left( {f\left( x \right)} \right) = {\left( {{x^n}} \right)^{\dfrac{1}{n}}}$
Now, Again the powers of n and $\dfrac{1}{n}$ will be cancelled out and hence we have
$f\left( {f\left( x \right)} \right) = x$
So, the correct answer is “Option A”.
Note: Similar questions can be asked with multiple iteration of f(x) ,for .e.g. $f\left[ {f\left( {f\left( x \right)} \right)} \right]$, follow the same procedure as above. Attention must be given while substituting and simplifying as any missed sign or wrong interpretation may lead to wrong answers.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

