Answer
Verified
447.9k+ views
Hint: The function to be continuous at a particular point like say a, then we have a condition for a, where $f\left( x \right)$ function needs to have its left hand limit, Right hand limit and value equal to each other. Like \[ \Rightarrow \dfrac{{\lim }}{{x \to {a^ - }}}\;f\left( x \right) = f\left( a \right) = \;\dfrac{{\lim }}{{x \to {a^ + }}}f\left( x \right)\]
Complete step by step solution: let’s begin with the given function which is represented as
$\begin{gathered}
f\left( x \right) = \left\{ {\dfrac{{{x^2} + \propto }}{{2\sqrt {{x^2} + 1 + B} }}} \right\}\;\;\;\;\;\;\;\; \\
\\
\end{gathered} $ $\begin{gathered}
x \geqslant 0 \\
x < 0 \\
\end{gathered} $
As we know that from given data,$f\left( {{\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}} \right) = 2,$ so for this we will use the function $f\left( x \right) = {x^2} + \propto $ because ${\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}$ is greater than 0
So, $f\left( {\dfrac{1}{2}} \right) = \dfrac{1}{4} + \propto = 2$
\[ \Rightarrow \; \propto \; = 2 - \dfrac{1}{4} = \dfrac{7}{4}\]
Now we need to find the value of B, and the other information given is they are continuous at x = 0 for being continuous of a function the left hand limit, Right hand limit should be equal.
$so\dfrac{{\;\lim }}{{x \to {0^ - }}}f\left( x \right) = \dfrac{{\lim }}{{x \to {0^ + }}}f\left( x \right)$
$ \Rightarrow \dfrac{{\lim }}{{x \to {0^ - }}}\;\left( {{x^2} + \propto } \right) = \dfrac{{\lim }}{{x \to {0^ + }}}2\sqrt {{x^2} + 1} + B)$
$ \Rightarrow \lim {\left( 0 \right)^2} + \propto \; = 2\sqrt {{0^2} + } 1 + B$
$ \propto - 2 + B$
So we get,$B = \; \propto - 2\;and \propto = {\raise0.5ex\hbox{$\scriptstyle 7$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 4$}}$
$ \Rightarrow $ we get $B = \; \propto - 2 = \dfrac{7}{4} - 2 = - \dfrac{1}{4}$
Hence we get the value of \[\left( { \propto ,B} \right) = \left( {{\raise0.5ex\hbox{$\scriptstyle 7$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle {4,}$}}{\raise0.5ex\hbox{$\scriptstyle { - 1}$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 4$}}} \right)\] option A is the correct answer.
Note: we know that function to get continuous left-hand limit, Right hand limit and function value should be equal.
$\dfrac{{\lim }}{{x \to {a^ - }}}f\left( x \right) = f\left( a \right) = \dfrac{{\lim }}{{x \to {a^ + }}}f\left( x \right)$ Similarly, for differentiability of a function at point a is checked by
$\dfrac{{\lim }}{{x \to {a^ - }}}f\left( x \right) = f'\left( a \right) = \dfrac{{\lim }}{{x \to {a^ + }}}f'\left( x \right)$
Complete step by step solution: let’s begin with the given function which is represented as
$\begin{gathered}
f\left( x \right) = \left\{ {\dfrac{{{x^2} + \propto }}{{2\sqrt {{x^2} + 1 + B} }}} \right\}\;\;\;\;\;\;\;\; \\
\\
\end{gathered} $ $\begin{gathered}
x \geqslant 0 \\
x < 0 \\
\end{gathered} $
As we know that from given data,$f\left( {{\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}} \right) = 2,$ so for this we will use the function $f\left( x \right) = {x^2} + \propto $ because ${\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}$ is greater than 0
So, $f\left( {\dfrac{1}{2}} \right) = \dfrac{1}{4} + \propto = 2$
\[ \Rightarrow \; \propto \; = 2 - \dfrac{1}{4} = \dfrac{7}{4}\]
Now we need to find the value of B, and the other information given is they are continuous at x = 0 for being continuous of a function the left hand limit, Right hand limit should be equal.
$so\dfrac{{\;\lim }}{{x \to {0^ - }}}f\left( x \right) = \dfrac{{\lim }}{{x \to {0^ + }}}f\left( x \right)$
$ \Rightarrow \dfrac{{\lim }}{{x \to {0^ - }}}\;\left( {{x^2} + \propto } \right) = \dfrac{{\lim }}{{x \to {0^ + }}}2\sqrt {{x^2} + 1} + B)$
$ \Rightarrow \lim {\left( 0 \right)^2} + \propto \; = 2\sqrt {{0^2} + } 1 + B$
$ \propto - 2 + B$
So we get,$B = \; \propto - 2\;and \propto = {\raise0.5ex\hbox{$\scriptstyle 7$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 4$}}$
$ \Rightarrow $ we get $B = \; \propto - 2 = \dfrac{7}{4} - 2 = - \dfrac{1}{4}$
Hence we get the value of \[\left( { \propto ,B} \right) = \left( {{\raise0.5ex\hbox{$\scriptstyle 7$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle {4,}$}}{\raise0.5ex\hbox{$\scriptstyle { - 1}$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 4$}}} \right)\] option A is the correct answer.
Note: we know that function to get continuous left-hand limit, Right hand limit and function value should be equal.
$\dfrac{{\lim }}{{x \to {a^ - }}}f\left( x \right) = f\left( a \right) = \dfrac{{\lim }}{{x \to {a^ + }}}f\left( x \right)$ Similarly, for differentiability of a function at point a is checked by
$\dfrac{{\lim }}{{x \to {a^ - }}}f\left( x \right) = f'\left( a \right) = \dfrac{{\lim }}{{x \to {a^ + }}}f'\left( x \right)$
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths