
If $f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{{x^2} - 1}}{{x - 1}};{\text{ for }}x \ne 1} \\
{2;{\text{ for }}x = 1}
\end{array}} \right.$. Find whether $f\left( x \right)$ continuous at $x = 1$.
Answer
605.4k+ views
Hint- Calculate LHL and RHL of the given function.
LHL $\mathop { = \lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{h \to 0} f\left( {1 - h} \right)$, RHL$ = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{h \to 0} f\left( {1 + h} \right)$
Given function
$f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{{x^2} - 1}}{{x - 1}};{\text{ for }}x \ne 1} \\
{2;{\text{ for }}x = 1}
\end{array}} \right.$
We have to check its continuity at $x = 1$.
So, consider LHL
$\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)$where ‘-’ sign indicates LHL.
Now convert the limit into $h \to 0$ by substituting $\left( {1 - h} \right)$ in place of x.
For LHL the function is left sided to 1. i.e. for $x \ne 1$.
LHL$ = \mathop {\lim }\limits_{h \to 0} f\left( {1 - h} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\left( {1 - h} \right)}^2} - 1}}{{\left( {1 - h} \right) - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{1 + {h^2} - 2h - 1}}{{ - h}} = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{h - 2}}{{ - 1}}} \right)$
Now substitute h = 0, we have
LHL $ = \dfrac{{0 - 2}}{{ - 1}} = 2$
Now consider RHL
$\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right)$where ‘+’ sign indicates RHL.
Now convert the limit into $h \to 0$ by substituting $\left( {1 + h} \right)$ in place of x.
For RHL the function is right sided to 1. i.e. for $x \ne 1$.
RHL$ = \mathop {\lim }\limits_{h \to 0} f\left( {1 + h} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\left( {1 + h} \right)}^2} - 1}}{{\left( {1 + h} \right) - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{1 + {h^2} + 2h - 1}}{h} = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{h + 2}}{1}} \right)$
Now substitute h = 0, we have
RHL $ = \dfrac{{0 + 2}}{1} = 2$.
Also $f\left( 1 \right) = 2$ (given).
Now, since
$\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} f\left( x \right) = 2$
Hence $f\left( x \right)$ is continuous at $x = 1$.
Note- In such types of questions the key concept we have to remember is that if the left hand limit, right hand limit and the value of function at a given point are equal then the function is continuous at a given point. So calculate LHL, RHL at a given point and check whether they are equal and also check they are equal to the value of the function at that point if yes then the function is continuous if not then the function is not continuous.
LHL $\mathop { = \lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{h \to 0} f\left( {1 - h} \right)$, RHL$ = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{h \to 0} f\left( {1 + h} \right)$
Given function
$f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{{x^2} - 1}}{{x - 1}};{\text{ for }}x \ne 1} \\
{2;{\text{ for }}x = 1}
\end{array}} \right.$
We have to check its continuity at $x = 1$.
So, consider LHL
$\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)$where ‘-’ sign indicates LHL.
Now convert the limit into $h \to 0$ by substituting $\left( {1 - h} \right)$ in place of x.
For LHL the function is left sided to 1. i.e. for $x \ne 1$.
LHL$ = \mathop {\lim }\limits_{h \to 0} f\left( {1 - h} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\left( {1 - h} \right)}^2} - 1}}{{\left( {1 - h} \right) - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{1 + {h^2} - 2h - 1}}{{ - h}} = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{h - 2}}{{ - 1}}} \right)$
Now substitute h = 0, we have
LHL $ = \dfrac{{0 - 2}}{{ - 1}} = 2$
Now consider RHL
$\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right)$where ‘+’ sign indicates RHL.
Now convert the limit into $h \to 0$ by substituting $\left( {1 + h} \right)$ in place of x.
For RHL the function is right sided to 1. i.e. for $x \ne 1$.
RHL$ = \mathop {\lim }\limits_{h \to 0} f\left( {1 + h} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\left( {1 + h} \right)}^2} - 1}}{{\left( {1 + h} \right) - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{1 + {h^2} + 2h - 1}}{h} = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{h + 2}}{1}} \right)$
Now substitute h = 0, we have
RHL $ = \dfrac{{0 + 2}}{1} = 2$.
Also $f\left( 1 \right) = 2$ (given).
Now, since
$\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} f\left( x \right) = 2$
Hence $f\left( x \right)$ is continuous at $x = 1$.
Note- In such types of questions the key concept we have to remember is that if the left hand limit, right hand limit and the value of function at a given point are equal then the function is continuous at a given point. So calculate LHL, RHL at a given point and check whether they are equal and also check they are equal to the value of the function at that point if yes then the function is continuous if not then the function is not continuous.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

