# If $f\left( 5 \right) = 7$ and $f'\left( 5 \right) = 7$ then $\mathop {\lim }\limits_{x \to 5} \dfrac{{xf\left( 5 \right) - 5f\left( x \right)}}{{x - 5}}$ is given by

$

\left( a \right)35 \\

\left( b \right) - 35 \\

\left( c \right)28 \\

\left( d \right) - 28 \\

$

Answer

Verified

367.2k+ views

Hint: Use L'hopital's rule, which is generally used to find the limits to reduce it to indeterminate form.

First of all we have to check any indeterminate form $\left( {\dfrac{0}{0},\dfrac{\infty }{\infty },\infty - \infty ,{0^0},{1^\infty },{\infty ^0},0 \times \infty } \right)$ make or not. If any indeterminate form comes then we apply L'hopital's rule.

Now, put $x = 5$ in $\dfrac{{xf\left( 5 \right) - 5f\left( x \right)}}{{x - 5}}$

$ \Rightarrow \dfrac{{5f\left( 5 \right) - 5f\left( 5 \right)}}{{5 - 5}} = \dfrac{0}{0}$ (indeterminate form)

So, we apply L'hopital's rule

In L’hopital’s rule we differentiate both numerator and denominator to reduce indeterminate form.

$

\Rightarrow \mathop {\lim }\limits_{x \to 5} \dfrac{{\dfrac{d}{{dx}}\left( {xf\left( 5 \right) - 5f\left( x \right)} \right)}}{{\dfrac{d}{{dx}}\left( {x - 5} \right)}} \\

\Rightarrow \mathop {\lim }\limits_{x \to 5} \dfrac{{f\left( 5 \right) - 5f'\left( x \right)}}{{1 - 0}} \\

\\

$

If $x$ tends to $5$ So, there is no indeterminate form.

Now, put $x = 5$

$ \Rightarrow f\left( 5 \right) - 5f'\left( 5 \right)$

$f\left( 5 \right) = 7$ and $f'\left( 5 \right) = 7$ given in question

$

\Rightarrow 7 - 5 \times 7 \\

\Rightarrow 7 - 35 \\

\Rightarrow - 28 \\

$

So, the correct option is $\left( d \right)$.

Note: whenever we come to these types of problems first of all we have to check any indeterminate form make or not. If any indeterminate form makes So, we can apply L'hopital's rule unless the indeterminate form reduces. If there is no indeterminate form then directly put the value of $x$.

First of all we have to check any indeterminate form $\left( {\dfrac{0}{0},\dfrac{\infty }{\infty },\infty - \infty ,{0^0},{1^\infty },{\infty ^0},0 \times \infty } \right)$ make or not. If any indeterminate form comes then we apply L'hopital's rule.

Now, put $x = 5$ in $\dfrac{{xf\left( 5 \right) - 5f\left( x \right)}}{{x - 5}}$

$ \Rightarrow \dfrac{{5f\left( 5 \right) - 5f\left( 5 \right)}}{{5 - 5}} = \dfrac{0}{0}$ (indeterminate form)

So, we apply L'hopital's rule

In L’hopital’s rule we differentiate both numerator and denominator to reduce indeterminate form.

$

\Rightarrow \mathop {\lim }\limits_{x \to 5} \dfrac{{\dfrac{d}{{dx}}\left( {xf\left( 5 \right) - 5f\left( x \right)} \right)}}{{\dfrac{d}{{dx}}\left( {x - 5} \right)}} \\

\Rightarrow \mathop {\lim }\limits_{x \to 5} \dfrac{{f\left( 5 \right) - 5f'\left( x \right)}}{{1 - 0}} \\

\\

$

If $x$ tends to $5$ So, there is no indeterminate form.

Now, put $x = 5$

$ \Rightarrow f\left( 5 \right) - 5f'\left( 5 \right)$

$f\left( 5 \right) = 7$ and $f'\left( 5 \right) = 7$ given in question

$

\Rightarrow 7 - 5 \times 7 \\

\Rightarrow 7 - 35 \\

\Rightarrow - 28 \\

$

So, the correct option is $\left( d \right)$.

Note: whenever we come to these types of problems first of all we have to check any indeterminate form make or not. If any indeterminate form makes So, we can apply L'hopital's rule unless the indeterminate form reduces. If there is no indeterminate form then directly put the value of $x$.

Last updated date: 28th Sep 2023

•

Total views: 367.2k

•

Views today: 4.67k

Recently Updated Pages

What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is meant by shramdaan AVoluntary contribution class 11 social science CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

An alternating current can be produced by A a transformer class 12 physics CBSE

What is the value of 01+23+45+67++1617+1819+20 class 11 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers