
If direction cosines of two lines are proportional to \[(2,3. - 6)\] and \[(3, - 4,5)\]then the acute angle between them is
A.${\cos ^{ - 1}}(\dfrac{{49}}{{36}})$
B.${\cos ^{ - 1}}(\dfrac{{18\sqrt 2 }}{{35}})$
C.${96^ \circ }$
D.${\cos ^{ - 1}}(\dfrac{{18}}{{35}})$
Answer
575.7k+ views
Hint: In the given question, we have to find the angle between two lines, say a and b as shown in diagram.
The dot product of a and b is given by
$ \Rightarrow \overrightarrow a .\overrightarrow b = |\overrightarrow a ||\overrightarrow b |\cos \phi $
$ \Rightarrow \phi = {\cos ^{ - 1}}(\dfrac{{\overrightarrow a .\overrightarrow b }}{{|\overrightarrow a ||\overrightarrow b |}})$ ………………….(1)
Complete step-by-step answer:
First of all, find the value of $\overrightarrow a \& \overrightarrow b $i.e.
$
\Rightarrow \overrightarrow a = \overrightarrow {OA} = 2\mathop i\limits^ \wedge + 3\mathop j\limits^ \wedge - 6\mathop k\limits^ \wedge \\
\Rightarrow \overrightarrow b = \overrightarrow {OB} = 3\mathop i\limits^ \wedge - 4\mathop j\limits^ \wedge + 5\mathop k\limits^ \wedge \\
$
After that find the value of $|\overrightarrow a ||\overrightarrow b |$, for we have to find $|\overrightarrow a |\& |\overrightarrow b |$as follows:
$
\Rightarrow |\overrightarrow a | = \sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} \\
\Rightarrow |\overrightarrow a | = \sqrt {{2^2} + {3^2} + {{( - 6)}^2}} \\
\Rightarrow |\overrightarrow a | = \sqrt {4 + 9 + 36} \\
\Rightarrow |\overrightarrow a | = \sqrt {49} = 7 \\
$
$
\Rightarrow |\overrightarrow a | = \sqrt {{x_2}^2 + {y_2}^2 + {z_3}^2} \\
\Rightarrow |\overrightarrow a | = \sqrt {{3^2} + {{( - 4)}^2} + {5^2}} \\
\Rightarrow |\overrightarrow a | = \sqrt {9 + 16 + 25} \\
\Rightarrow |\overrightarrow a | = \sqrt {50} = 5\sqrt 2 \\
$
$ \Rightarrow |\overrightarrow a | = 5\sqrt 2 $ …………………….(2)
Therefore, value of $|\overrightarrow a ||\overrightarrow b |$ is
$ \Rightarrow |\overrightarrow a ||\overrightarrow b | = 7 \times 5\sqrt 2 = 35\sqrt 2 $
Now, find the value of $\overrightarrow a .\overrightarrow b $ as given below
$
\Rightarrow \overrightarrow a .\overrightarrow b = ({x_1}\mathop i\limits^ \wedge + {y_1}\mathop j\limits^ \wedge + {z_1}\mathop {k)}\limits^ \wedge ({x_2}\mathop i\limits^ \wedge + {y_2}\mathop j\limits^ \wedge + {z_2}\mathop {k)}\limits^ \wedge \\
\Rightarrow \overrightarrow a .\overrightarrow b = (2\mathop i\limits^ \wedge + 3\mathop j\limits^ \wedge + ( - 6)\mathop {k)}\limits^ \wedge (3\mathop i\limits^ \wedge + ( - 4)\mathop j\limits^ \wedge + 5\mathop {k)}\limits^ \wedge \\
\Rightarrow \overrightarrow a .\overrightarrow b = (2 \times 3) + (3 \times ( - 4)) + (( - 6) \times 5) \\
\Rightarrow \overrightarrow a .\overrightarrow b = 6 - 12 - 30 = - 36 \\
$
$ \Rightarrow \overrightarrow a .\overrightarrow b = - 36$ ……………………..(3)
For finding $\phi $ put the values of 2 and 3 in equation 1, we get
$ \Rightarrow \phi = {\cos ^{ - 1}}(\dfrac{{\overrightarrow a .\overrightarrow b }}{{|\overrightarrow a ||\overrightarrow b |}})$
$
\Rightarrow \phi = {\cos ^{ - 1}}(\dfrac{{ - 36}}{{35\sqrt 2 }}) \\
\Rightarrow \phi = {\cos ^{ - 1}}(\dfrac{{36}}{{35\sqrt 2 }}) \\
\Rightarrow \phi = {\cos ^{ - 1}}(\dfrac{{36\sqrt 2 }}{{35\sqrt 2 \sqrt 2 }}) = {\cos ^{ - 1}}(\dfrac{{36\sqrt 2 }}{{35 \times 2}}) \\
\Rightarrow \phi = {\cos ^{ - 1}}(\dfrac{{18\sqrt 2 }}{{35}}) \\
$
The required answer is $\phi = {\cos ^{ - 1}}(\dfrac{{18\sqrt 2 }}{{35}})$
So, the correct option is B.
Note: Some students get confused and don't take O points and form the angle. So, to do these types of questions assume a point where angle is formed.
For cosine direction take scalar product and for sine direction take cross product.
Also, students take negative values as they forget to apply the concept of trigonometry i.e. $\cos \theta = \cos ( - \theta )$. What in this question negative value is given in options but if in options negative value is given, don’t mark that option. Your answer can get wrong, take care of this.
The dot product of a and b is given by
$ \Rightarrow \overrightarrow a .\overrightarrow b = |\overrightarrow a ||\overrightarrow b |\cos \phi $
$ \Rightarrow \phi = {\cos ^{ - 1}}(\dfrac{{\overrightarrow a .\overrightarrow b }}{{|\overrightarrow a ||\overrightarrow b |}})$ ………………….(1)
Complete step-by-step answer:
First of all, find the value of $\overrightarrow a \& \overrightarrow b $i.e.
$
\Rightarrow \overrightarrow a = \overrightarrow {OA} = 2\mathop i\limits^ \wedge + 3\mathop j\limits^ \wedge - 6\mathop k\limits^ \wedge \\
\Rightarrow \overrightarrow b = \overrightarrow {OB} = 3\mathop i\limits^ \wedge - 4\mathop j\limits^ \wedge + 5\mathop k\limits^ \wedge \\
$
After that find the value of $|\overrightarrow a ||\overrightarrow b |$, for we have to find $|\overrightarrow a |\& |\overrightarrow b |$as follows:
$
\Rightarrow |\overrightarrow a | = \sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} \\
\Rightarrow |\overrightarrow a | = \sqrt {{2^2} + {3^2} + {{( - 6)}^2}} \\
\Rightarrow |\overrightarrow a | = \sqrt {4 + 9 + 36} \\
\Rightarrow |\overrightarrow a | = \sqrt {49} = 7 \\
$
$
\Rightarrow |\overrightarrow a | = \sqrt {{x_2}^2 + {y_2}^2 + {z_3}^2} \\
\Rightarrow |\overrightarrow a | = \sqrt {{3^2} + {{( - 4)}^2} + {5^2}} \\
\Rightarrow |\overrightarrow a | = \sqrt {9 + 16 + 25} \\
\Rightarrow |\overrightarrow a | = \sqrt {50} = 5\sqrt 2 \\
$
$ \Rightarrow |\overrightarrow a | = 5\sqrt 2 $ …………………….(2)
Therefore, value of $|\overrightarrow a ||\overrightarrow b |$ is
$ \Rightarrow |\overrightarrow a ||\overrightarrow b | = 7 \times 5\sqrt 2 = 35\sqrt 2 $
Now, find the value of $\overrightarrow a .\overrightarrow b $ as given below
$
\Rightarrow \overrightarrow a .\overrightarrow b = ({x_1}\mathop i\limits^ \wedge + {y_1}\mathop j\limits^ \wedge + {z_1}\mathop {k)}\limits^ \wedge ({x_2}\mathop i\limits^ \wedge + {y_2}\mathop j\limits^ \wedge + {z_2}\mathop {k)}\limits^ \wedge \\
\Rightarrow \overrightarrow a .\overrightarrow b = (2\mathop i\limits^ \wedge + 3\mathop j\limits^ \wedge + ( - 6)\mathop {k)}\limits^ \wedge (3\mathop i\limits^ \wedge + ( - 4)\mathop j\limits^ \wedge + 5\mathop {k)}\limits^ \wedge \\
\Rightarrow \overrightarrow a .\overrightarrow b = (2 \times 3) + (3 \times ( - 4)) + (( - 6) \times 5) \\
\Rightarrow \overrightarrow a .\overrightarrow b = 6 - 12 - 30 = - 36 \\
$
$ \Rightarrow \overrightarrow a .\overrightarrow b = - 36$ ……………………..(3)
For finding $\phi $ put the values of 2 and 3 in equation 1, we get
$ \Rightarrow \phi = {\cos ^{ - 1}}(\dfrac{{\overrightarrow a .\overrightarrow b }}{{|\overrightarrow a ||\overrightarrow b |}})$
$
\Rightarrow \phi = {\cos ^{ - 1}}(\dfrac{{ - 36}}{{35\sqrt 2 }}) \\
\Rightarrow \phi = {\cos ^{ - 1}}(\dfrac{{36}}{{35\sqrt 2 }}) \\
\Rightarrow \phi = {\cos ^{ - 1}}(\dfrac{{36\sqrt 2 }}{{35\sqrt 2 \sqrt 2 }}) = {\cos ^{ - 1}}(\dfrac{{36\sqrt 2 }}{{35 \times 2}}) \\
\Rightarrow \phi = {\cos ^{ - 1}}(\dfrac{{18\sqrt 2 }}{{35}}) \\
$
The required answer is $\phi = {\cos ^{ - 1}}(\dfrac{{18\sqrt 2 }}{{35}})$
So, the correct option is B.
Note: Some students get confused and don't take O points and form the angle. So, to do these types of questions assume a point where angle is formed.
For cosine direction take scalar product and for sine direction take cross product.
Also, students take negative values as they forget to apply the concept of trigonometry i.e. $\cos \theta = \cos ( - \theta )$. What in this question negative value is given in options but if in options negative value is given, don’t mark that option. Your answer can get wrong, take care of this.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

