
If direction cosines of two lines are proportional to \[(2,3. - 6)\] and \[(3, - 4,5)\]then the acute angle between them is
A.${\cos ^{ - 1}}(\dfrac{{49}}{{36}})$
B.${\cos ^{ - 1}}(\dfrac{{18\sqrt 2 }}{{35}})$
C.${96^ \circ }$
D.${\cos ^{ - 1}}(\dfrac{{18}}{{35}})$
Answer
510k+ views
Hint: In the given question, we have to find the angle between two lines, say a and b as shown in diagram.
The dot product of a and b is given by
$ \Rightarrow \overrightarrow a .\overrightarrow b = |\overrightarrow a ||\overrightarrow b |\cos \phi $
$ \Rightarrow \phi = {\cos ^{ - 1}}(\dfrac{{\overrightarrow a .\overrightarrow b }}{{|\overrightarrow a ||\overrightarrow b |}})$ ………………….(1)
Complete step-by-step answer:
First of all, find the value of $\overrightarrow a \& \overrightarrow b $i.e.
$
\Rightarrow \overrightarrow a = \overrightarrow {OA} = 2\mathop i\limits^ \wedge + 3\mathop j\limits^ \wedge - 6\mathop k\limits^ \wedge \\
\Rightarrow \overrightarrow b = \overrightarrow {OB} = 3\mathop i\limits^ \wedge - 4\mathop j\limits^ \wedge + 5\mathop k\limits^ \wedge \\
$
After that find the value of $|\overrightarrow a ||\overrightarrow b |$, for we have to find $|\overrightarrow a |\& |\overrightarrow b |$as follows:
$
\Rightarrow |\overrightarrow a | = \sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} \\
\Rightarrow |\overrightarrow a | = \sqrt {{2^2} + {3^2} + {{( - 6)}^2}} \\
\Rightarrow |\overrightarrow a | = \sqrt {4 + 9 + 36} \\
\Rightarrow |\overrightarrow a | = \sqrt {49} = 7 \\
$
$
\Rightarrow |\overrightarrow a | = \sqrt {{x_2}^2 + {y_2}^2 + {z_3}^2} \\
\Rightarrow |\overrightarrow a | = \sqrt {{3^2} + {{( - 4)}^2} + {5^2}} \\
\Rightarrow |\overrightarrow a | = \sqrt {9 + 16 + 25} \\
\Rightarrow |\overrightarrow a | = \sqrt {50} = 5\sqrt 2 \\
$
$ \Rightarrow |\overrightarrow a | = 5\sqrt 2 $ …………………….(2)
Therefore, value of $|\overrightarrow a ||\overrightarrow b |$ is
$ \Rightarrow |\overrightarrow a ||\overrightarrow b | = 7 \times 5\sqrt 2 = 35\sqrt 2 $
Now, find the value of $\overrightarrow a .\overrightarrow b $ as given below
$
\Rightarrow \overrightarrow a .\overrightarrow b = ({x_1}\mathop i\limits^ \wedge + {y_1}\mathop j\limits^ \wedge + {z_1}\mathop {k)}\limits^ \wedge ({x_2}\mathop i\limits^ \wedge + {y_2}\mathop j\limits^ \wedge + {z_2}\mathop {k)}\limits^ \wedge \\
\Rightarrow \overrightarrow a .\overrightarrow b = (2\mathop i\limits^ \wedge + 3\mathop j\limits^ \wedge + ( - 6)\mathop {k)}\limits^ \wedge (3\mathop i\limits^ \wedge + ( - 4)\mathop j\limits^ \wedge + 5\mathop {k)}\limits^ \wedge \\
\Rightarrow \overrightarrow a .\overrightarrow b = (2 \times 3) + (3 \times ( - 4)) + (( - 6) \times 5) \\
\Rightarrow \overrightarrow a .\overrightarrow b = 6 - 12 - 30 = - 36 \\
$
$ \Rightarrow \overrightarrow a .\overrightarrow b = - 36$ ……………………..(3)
For finding $\phi $ put the values of 2 and 3 in equation 1, we get
$ \Rightarrow \phi = {\cos ^{ - 1}}(\dfrac{{\overrightarrow a .\overrightarrow b }}{{|\overrightarrow a ||\overrightarrow b |}})$
$
\Rightarrow \phi = {\cos ^{ - 1}}(\dfrac{{ - 36}}{{35\sqrt 2 }}) \\
\Rightarrow \phi = {\cos ^{ - 1}}(\dfrac{{36}}{{35\sqrt 2 }}) \\
\Rightarrow \phi = {\cos ^{ - 1}}(\dfrac{{36\sqrt 2 }}{{35\sqrt 2 \sqrt 2 }}) = {\cos ^{ - 1}}(\dfrac{{36\sqrt 2 }}{{35 \times 2}}) \\
\Rightarrow \phi = {\cos ^{ - 1}}(\dfrac{{18\sqrt 2 }}{{35}}) \\
$
The required answer is $\phi = {\cos ^{ - 1}}(\dfrac{{18\sqrt 2 }}{{35}})$
So, the correct option is B.
Note: Some students get confused and don't take O points and form the angle. So, to do these types of questions assume a point where angle is formed.
For cosine direction take scalar product and for sine direction take cross product.
Also, students take negative values as they forget to apply the concept of trigonometry i.e. $\cos \theta = \cos ( - \theta )$. What in this question negative value is given in options but if in options negative value is given, don’t mark that option. Your answer can get wrong, take care of this.

The dot product of a and b is given by
$ \Rightarrow \overrightarrow a .\overrightarrow b = |\overrightarrow a ||\overrightarrow b |\cos \phi $
$ \Rightarrow \phi = {\cos ^{ - 1}}(\dfrac{{\overrightarrow a .\overrightarrow b }}{{|\overrightarrow a ||\overrightarrow b |}})$ ………………….(1)
Complete step-by-step answer:
First of all, find the value of $\overrightarrow a \& \overrightarrow b $i.e.
$
\Rightarrow \overrightarrow a = \overrightarrow {OA} = 2\mathop i\limits^ \wedge + 3\mathop j\limits^ \wedge - 6\mathop k\limits^ \wedge \\
\Rightarrow \overrightarrow b = \overrightarrow {OB} = 3\mathop i\limits^ \wedge - 4\mathop j\limits^ \wedge + 5\mathop k\limits^ \wedge \\
$
After that find the value of $|\overrightarrow a ||\overrightarrow b |$, for we have to find $|\overrightarrow a |\& |\overrightarrow b |$as follows:
$
\Rightarrow |\overrightarrow a | = \sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} \\
\Rightarrow |\overrightarrow a | = \sqrt {{2^2} + {3^2} + {{( - 6)}^2}} \\
\Rightarrow |\overrightarrow a | = \sqrt {4 + 9 + 36} \\
\Rightarrow |\overrightarrow a | = \sqrt {49} = 7 \\
$
$
\Rightarrow |\overrightarrow a | = \sqrt {{x_2}^2 + {y_2}^2 + {z_3}^2} \\
\Rightarrow |\overrightarrow a | = \sqrt {{3^2} + {{( - 4)}^2} + {5^2}} \\
\Rightarrow |\overrightarrow a | = \sqrt {9 + 16 + 25} \\
\Rightarrow |\overrightarrow a | = \sqrt {50} = 5\sqrt 2 \\
$
$ \Rightarrow |\overrightarrow a | = 5\sqrt 2 $ …………………….(2)
Therefore, value of $|\overrightarrow a ||\overrightarrow b |$ is
$ \Rightarrow |\overrightarrow a ||\overrightarrow b | = 7 \times 5\sqrt 2 = 35\sqrt 2 $
Now, find the value of $\overrightarrow a .\overrightarrow b $ as given below
$
\Rightarrow \overrightarrow a .\overrightarrow b = ({x_1}\mathop i\limits^ \wedge + {y_1}\mathop j\limits^ \wedge + {z_1}\mathop {k)}\limits^ \wedge ({x_2}\mathop i\limits^ \wedge + {y_2}\mathop j\limits^ \wedge + {z_2}\mathop {k)}\limits^ \wedge \\
\Rightarrow \overrightarrow a .\overrightarrow b = (2\mathop i\limits^ \wedge + 3\mathop j\limits^ \wedge + ( - 6)\mathop {k)}\limits^ \wedge (3\mathop i\limits^ \wedge + ( - 4)\mathop j\limits^ \wedge + 5\mathop {k)}\limits^ \wedge \\
\Rightarrow \overrightarrow a .\overrightarrow b = (2 \times 3) + (3 \times ( - 4)) + (( - 6) \times 5) \\
\Rightarrow \overrightarrow a .\overrightarrow b = 6 - 12 - 30 = - 36 \\
$
$ \Rightarrow \overrightarrow a .\overrightarrow b = - 36$ ……………………..(3)
For finding $\phi $ put the values of 2 and 3 in equation 1, we get
$ \Rightarrow \phi = {\cos ^{ - 1}}(\dfrac{{\overrightarrow a .\overrightarrow b }}{{|\overrightarrow a ||\overrightarrow b |}})$
$
\Rightarrow \phi = {\cos ^{ - 1}}(\dfrac{{ - 36}}{{35\sqrt 2 }}) \\
\Rightarrow \phi = {\cos ^{ - 1}}(\dfrac{{36}}{{35\sqrt 2 }}) \\
\Rightarrow \phi = {\cos ^{ - 1}}(\dfrac{{36\sqrt 2 }}{{35\sqrt 2 \sqrt 2 }}) = {\cos ^{ - 1}}(\dfrac{{36\sqrt 2 }}{{35 \times 2}}) \\
\Rightarrow \phi = {\cos ^{ - 1}}(\dfrac{{18\sqrt 2 }}{{35}}) \\
$
The required answer is $\phi = {\cos ^{ - 1}}(\dfrac{{18\sqrt 2 }}{{35}})$
So, the correct option is B.
Note: Some students get confused and don't take O points and form the angle. So, to do these types of questions assume a point where angle is formed.
For cosine direction take scalar product and for sine direction take cross product.
Also, students take negative values as they forget to apply the concept of trigonometry i.e. $\cos \theta = \cos ( - \theta )$. What in this question negative value is given in options but if in options negative value is given, don’t mark that option. Your answer can get wrong, take care of this.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
