Answer
Verified
392.1k+ views
Hint: In order to get the fixed point, solve the given equation $ \dfrac{a}{{\sqrt {bc} }} - 2 = \sqrt {\dfrac{b}{c}} + \sqrt {\dfrac{c}{b}} $ , obtain an equation in terms of the variables $ a,b,c $ . Then compare the equation with $ \sqrt a x + \sqrt b y + \sqrt c = 0 $ , find the value of $ x,y $ and place it in the fixed point $ \left( {x,y} \right) $ .
Complete step by step solution:
We are given with an equation $ \dfrac{a}{{\sqrt {bc} }} - 2 = \sqrt {\dfrac{b}{c}} + \sqrt {\dfrac{c}{b}} $ .
Solving this equation, step by step:
For that multiplying and dividing $ - 2 $ by $ \sqrt {bc} $ , in order to have a common denominator on the left side, and we get:
$
\dfrac{a}{{\sqrt {bc} }} - 2\dfrac{{\sqrt {bc} }}{{\sqrt {bc} }} = \sqrt {\dfrac{b}{c}} + \sqrt {\dfrac{c}{b}} \\
\Rightarrow \dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} = \sqrt {\dfrac{b}{c}} + \sqrt {\dfrac{c}{b}} \;
$
Since, we know that roots can be written as $ \sqrt {\dfrac{b}{c}} = \dfrac{{\sqrt b }}{{\sqrt c }} $ and $ \sqrt {bc} = \sqrt b \sqrt c $ .
So, using this writing the right-side equation as:
$ \dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} = \dfrac{{\sqrt b }}{{\sqrt c }} + \dfrac{{\sqrt c }}{{\sqrt b }} $
Multiplying and dividing the first operand on the right side by $ \sqrt b $ , and multiplying and dividing the second operand on the right side by $ \sqrt c $ , in order to get a common denominator:
Applying this, we get:
$ \dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} = \dfrac{{\sqrt b }}{{\sqrt c }} \times \dfrac{{\sqrt b }}{{\sqrt b }} + \dfrac{{\sqrt c }}{{\sqrt b }} \times \dfrac{{\sqrt c }}{{\sqrt c }} $
Solving the right-hand side:
Since, we know that $ \sqrt x .\sqrt x = x $ , that implies:
$
\dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} = \dfrac{b}{{\sqrt {bc} }} + \dfrac{c}{{\sqrt {bc} }} \\
\Rightarrow \dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} = \dfrac{{b + c}}{{\sqrt {bc} }} \;
$
Multiplying both the sides by $ \sqrt {bc} $ :
$
\dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} \times \sqrt {bc} = \dfrac{{b + c}}{{\sqrt {bc} }} \times \sqrt {bc} \\
\Rightarrow a - 2\sqrt {bc} = b + c \;
$
Adding both the sides by $ 2\sqrt {bc} $ :
$
\Rightarrow a - 2\sqrt {bc} = b + c \\
\Rightarrow a - 2\sqrt {bc} + 2\sqrt {bc} = b + c + 2\sqrt {bc} \\
\Rightarrow a = b + c + 2\sqrt {bc} \;
$
Since, we know that $ \sqrt x .\sqrt x = x $ , so $ b, c $ and $ a $ can be written as $ b = {\left( {\sqrt b } \right)^2} $ , $ a = {\left( {\sqrt a } \right)^2} $ , $ c = {\left( {\sqrt c } \right)^2} $ .
Substituting these values in the above equation, we get:
$
\Rightarrow a = b + c + 2\sqrt {bc} \\
\Rightarrow {\left( {\sqrt a } \right)^2} = {\left( {\sqrt b } \right)^2} + {\left( {\sqrt c } \right)^2} + 2\sqrt {bc} \;
$
On the right-hand side, we can see that it perfectly suits the formula: $ {\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy $ .
So, replacing $ {\left( {\sqrt b } \right)^2} + {\left( {\sqrt c } \right)^2} + 2\sqrt {bc} $ by $ {\left( {\sqrt b + \sqrt c } \right)^2} $ , we write it as:
$ {\left( {\sqrt a } \right)^2} = {\left( {\sqrt b + \sqrt c } \right)^2} $
Subtracting both the sides by $ {\left( {\sqrt b + \sqrt c } \right)^2} $ , we get:
$
{\left( {\sqrt a } \right)^2} - {\left( {\sqrt b + \sqrt c } \right)^2} = {\left( {\sqrt b + \sqrt c } \right)^2} - {\left( {\sqrt b + \sqrt c } \right)^2} \\
\Rightarrow {\left( {\sqrt a } \right)^2} - {\left( {\sqrt b + \sqrt c } \right)^2} = 0 \;
$
Since, we know that $ {x^2} - {y^2} = \left( {x + y} \right)\left( {x - y} \right) $ , so applying this in the above equation:
$
{\left( {\sqrt a } \right)^2} - {\left( {\sqrt b + \sqrt c } \right)^2} = 0 \\
\Rightarrow \left( {\sqrt a + \left( {\sqrt b + \sqrt c } \right)} \right)\left( {\sqrt a - \left( {\sqrt b + \sqrt c } \right)} \right) = 0 \\
$
Opening the inner parenthesis:
$
\left( {\sqrt a + \left( {\sqrt b + \sqrt c } \right)} \right)\left( {\sqrt a - \left( {\sqrt b + \sqrt c } \right)} \right) = 0 \\
\Rightarrow \left( {\sqrt a + \sqrt b + \sqrt c } \right)\left( {\sqrt a - \sqrt b - \sqrt c } \right) = 0 \;
$
So, from the above equation, we can see that either $ \left( {\sqrt a + \sqrt b + \sqrt c } \right) = 0 $ or $ \left( {\sqrt a - \sqrt b - \sqrt c } \right) = 0 $ .
But it’s given that $ a,b,c > 0 $ , that implies $ \left( {\sqrt a + \sqrt b + \sqrt c } \right) \ne 0 $ as the square root values will give a positive number and when added, the terms would never result into zero.
That gives $ \left( {\sqrt a - \sqrt b - \sqrt c } \right) = 0 $ , taking $ - 1 $ common from the equation and which can be written as
$
\Rightarrow \left( {\sqrt a - \sqrt b - \sqrt c } \right) = 0 \\
\Rightarrow - 1\left( { - \sqrt a + \sqrt b + \sqrt c } \right) = 0 \;
$ .
Dividing both sides by $ - 1 $ , we get:
$ \Rightarrow \left( { - 1} \right)\sqrt a + \sqrt b \left( 1 \right) + \sqrt c = 0 $
Since, it’s given that the family of lines passes through the fixed point, so the equations would be the same.
So, comparing $ \left( { - 1} \right)\sqrt a + \sqrt b \left( 1 \right) + \sqrt c = 0 $ with another equation given $ \sqrt a x + \sqrt b y + \sqrt c = 0 $ , we get:
$
x = - 1 \\
y = 1 \;
$
Therefore, the fixed point becomes $ \left( {x,y} \right) = \left( { - 1,1} \right) $ , which matches with the option D.
Hence, Option D is correct.
So, the correct answer is “Option D”.
Note: It’s always preferred to solve step by step for ease, rather than solving at once, otherwise it would lead to confusion and there is a huge chance of error.
Writing of roots from one form to another is mandatory, like $ \sqrt {\dfrac{b}{c}} = \dfrac{{\sqrt b }}{{\sqrt c }} $ and $ \sqrt {bc} = \sqrt b \sqrt c $.
Complete step by step solution:
We are given with an equation $ \dfrac{a}{{\sqrt {bc} }} - 2 = \sqrt {\dfrac{b}{c}} + \sqrt {\dfrac{c}{b}} $ .
Solving this equation, step by step:
For that multiplying and dividing $ - 2 $ by $ \sqrt {bc} $ , in order to have a common denominator on the left side, and we get:
$
\dfrac{a}{{\sqrt {bc} }} - 2\dfrac{{\sqrt {bc} }}{{\sqrt {bc} }} = \sqrt {\dfrac{b}{c}} + \sqrt {\dfrac{c}{b}} \\
\Rightarrow \dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} = \sqrt {\dfrac{b}{c}} + \sqrt {\dfrac{c}{b}} \;
$
Since, we know that roots can be written as $ \sqrt {\dfrac{b}{c}} = \dfrac{{\sqrt b }}{{\sqrt c }} $ and $ \sqrt {bc} = \sqrt b \sqrt c $ .
So, using this writing the right-side equation as:
$ \dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} = \dfrac{{\sqrt b }}{{\sqrt c }} + \dfrac{{\sqrt c }}{{\sqrt b }} $
Multiplying and dividing the first operand on the right side by $ \sqrt b $ , and multiplying and dividing the second operand on the right side by $ \sqrt c $ , in order to get a common denominator:
Applying this, we get:
$ \dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} = \dfrac{{\sqrt b }}{{\sqrt c }} \times \dfrac{{\sqrt b }}{{\sqrt b }} + \dfrac{{\sqrt c }}{{\sqrt b }} \times \dfrac{{\sqrt c }}{{\sqrt c }} $
Solving the right-hand side:
Since, we know that $ \sqrt x .\sqrt x = x $ , that implies:
$
\dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} = \dfrac{b}{{\sqrt {bc} }} + \dfrac{c}{{\sqrt {bc} }} \\
\Rightarrow \dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} = \dfrac{{b + c}}{{\sqrt {bc} }} \;
$
Multiplying both the sides by $ \sqrt {bc} $ :
$
\dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} \times \sqrt {bc} = \dfrac{{b + c}}{{\sqrt {bc} }} \times \sqrt {bc} \\
\Rightarrow a - 2\sqrt {bc} = b + c \;
$
Adding both the sides by $ 2\sqrt {bc} $ :
$
\Rightarrow a - 2\sqrt {bc} = b + c \\
\Rightarrow a - 2\sqrt {bc} + 2\sqrt {bc} = b + c + 2\sqrt {bc} \\
\Rightarrow a = b + c + 2\sqrt {bc} \;
$
Since, we know that $ \sqrt x .\sqrt x = x $ , so $ b, c $ and $ a $ can be written as $ b = {\left( {\sqrt b } \right)^2} $ , $ a = {\left( {\sqrt a } \right)^2} $ , $ c = {\left( {\sqrt c } \right)^2} $ .
Substituting these values in the above equation, we get:
$
\Rightarrow a = b + c + 2\sqrt {bc} \\
\Rightarrow {\left( {\sqrt a } \right)^2} = {\left( {\sqrt b } \right)^2} + {\left( {\sqrt c } \right)^2} + 2\sqrt {bc} \;
$
On the right-hand side, we can see that it perfectly suits the formula: $ {\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy $ .
So, replacing $ {\left( {\sqrt b } \right)^2} + {\left( {\sqrt c } \right)^2} + 2\sqrt {bc} $ by $ {\left( {\sqrt b + \sqrt c } \right)^2} $ , we write it as:
$ {\left( {\sqrt a } \right)^2} = {\left( {\sqrt b + \sqrt c } \right)^2} $
Subtracting both the sides by $ {\left( {\sqrt b + \sqrt c } \right)^2} $ , we get:
$
{\left( {\sqrt a } \right)^2} - {\left( {\sqrt b + \sqrt c } \right)^2} = {\left( {\sqrt b + \sqrt c } \right)^2} - {\left( {\sqrt b + \sqrt c } \right)^2} \\
\Rightarrow {\left( {\sqrt a } \right)^2} - {\left( {\sqrt b + \sqrt c } \right)^2} = 0 \;
$
Since, we know that $ {x^2} - {y^2} = \left( {x + y} \right)\left( {x - y} \right) $ , so applying this in the above equation:
$
{\left( {\sqrt a } \right)^2} - {\left( {\sqrt b + \sqrt c } \right)^2} = 0 \\
\Rightarrow \left( {\sqrt a + \left( {\sqrt b + \sqrt c } \right)} \right)\left( {\sqrt a - \left( {\sqrt b + \sqrt c } \right)} \right) = 0 \\
$
Opening the inner parenthesis:
$
\left( {\sqrt a + \left( {\sqrt b + \sqrt c } \right)} \right)\left( {\sqrt a - \left( {\sqrt b + \sqrt c } \right)} \right) = 0 \\
\Rightarrow \left( {\sqrt a + \sqrt b + \sqrt c } \right)\left( {\sqrt a - \sqrt b - \sqrt c } \right) = 0 \;
$
So, from the above equation, we can see that either $ \left( {\sqrt a + \sqrt b + \sqrt c } \right) = 0 $ or $ \left( {\sqrt a - \sqrt b - \sqrt c } \right) = 0 $ .
But it’s given that $ a,b,c > 0 $ , that implies $ \left( {\sqrt a + \sqrt b + \sqrt c } \right) \ne 0 $ as the square root values will give a positive number and when added, the terms would never result into zero.
That gives $ \left( {\sqrt a - \sqrt b - \sqrt c } \right) = 0 $ , taking $ - 1 $ common from the equation and which can be written as
$
\Rightarrow \left( {\sqrt a - \sqrt b - \sqrt c } \right) = 0 \\
\Rightarrow - 1\left( { - \sqrt a + \sqrt b + \sqrt c } \right) = 0 \;
$ .
Dividing both sides by $ - 1 $ , we get:
$ \Rightarrow \left( { - 1} \right)\sqrt a + \sqrt b \left( 1 \right) + \sqrt c = 0 $
Since, it’s given that the family of lines passes through the fixed point, so the equations would be the same.
So, comparing $ \left( { - 1} \right)\sqrt a + \sqrt b \left( 1 \right) + \sqrt c = 0 $ with another equation given $ \sqrt a x + \sqrt b y + \sqrt c = 0 $ , we get:
$
x = - 1 \\
y = 1 \;
$
Therefore, the fixed point becomes $ \left( {x,y} \right) = \left( { - 1,1} \right) $ , which matches with the option D.
Hence, Option D is correct.
So, the correct answer is “Option D”.
Note: It’s always preferred to solve step by step for ease, rather than solving at once, otherwise it would lead to confusion and there is a huge chance of error.
Writing of roots from one form to another is mandatory, like $ \sqrt {\dfrac{b}{c}} = \dfrac{{\sqrt b }}{{\sqrt c }} $ and $ \sqrt {bc} = \sqrt b \sqrt c $.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which of the following is the capital of the union class 9 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Name the metals of the coins Tanka Shashgani and Jital class 6 social science CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life