
If $ \dfrac{a}{{\sqrt {bc} }} - 2 = \sqrt {\dfrac{b}{c}} + \sqrt {\dfrac{c}{b}} $ , where $ a,b,c > 0 $ then family of lines $ \sqrt a x + \sqrt b y + \sqrt c = 0 $ passes through the fixed point given by
A. $ \left( {1,1} \right) $
B. $ \left( {1, - 2} \right) $
C. $ \left( { - 1,2} \right) $
D. $ \left( { - 1,1} \right) $
Answer
499.8k+ views
Hint: In order to get the fixed point, solve the given equation $ \dfrac{a}{{\sqrt {bc} }} - 2 = \sqrt {\dfrac{b}{c}} + \sqrt {\dfrac{c}{b}} $ , obtain an equation in terms of the variables $ a,b,c $ . Then compare the equation with $ \sqrt a x + \sqrt b y + \sqrt c = 0 $ , find the value of $ x,y $ and place it in the fixed point $ \left( {x,y} \right) $ .
Complete step by step solution:
We are given with an equation $ \dfrac{a}{{\sqrt {bc} }} - 2 = \sqrt {\dfrac{b}{c}} + \sqrt {\dfrac{c}{b}} $ .
Solving this equation, step by step:
For that multiplying and dividing $ - 2 $ by $ \sqrt {bc} $ , in order to have a common denominator on the left side, and we get:
$
\dfrac{a}{{\sqrt {bc} }} - 2\dfrac{{\sqrt {bc} }}{{\sqrt {bc} }} = \sqrt {\dfrac{b}{c}} + \sqrt {\dfrac{c}{b}} \\
\Rightarrow \dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} = \sqrt {\dfrac{b}{c}} + \sqrt {\dfrac{c}{b}} \;
$
Since, we know that roots can be written as $ \sqrt {\dfrac{b}{c}} = \dfrac{{\sqrt b }}{{\sqrt c }} $ and $ \sqrt {bc} = \sqrt b \sqrt c $ .
So, using this writing the right-side equation as:
$ \dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} = \dfrac{{\sqrt b }}{{\sqrt c }} + \dfrac{{\sqrt c }}{{\sqrt b }} $
Multiplying and dividing the first operand on the right side by $ \sqrt b $ , and multiplying and dividing the second operand on the right side by $ \sqrt c $ , in order to get a common denominator:
Applying this, we get:
$ \dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} = \dfrac{{\sqrt b }}{{\sqrt c }} \times \dfrac{{\sqrt b }}{{\sqrt b }} + \dfrac{{\sqrt c }}{{\sqrt b }} \times \dfrac{{\sqrt c }}{{\sqrt c }} $
Solving the right-hand side:
Since, we know that $ \sqrt x .\sqrt x = x $ , that implies:
$
\dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} = \dfrac{b}{{\sqrt {bc} }} + \dfrac{c}{{\sqrt {bc} }} \\
\Rightarrow \dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} = \dfrac{{b + c}}{{\sqrt {bc} }} \;
$
Multiplying both the sides by $ \sqrt {bc} $ :
$
\dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} \times \sqrt {bc} = \dfrac{{b + c}}{{\sqrt {bc} }} \times \sqrt {bc} \\
\Rightarrow a - 2\sqrt {bc} = b + c \;
$
Adding both the sides by $ 2\sqrt {bc} $ :
$
\Rightarrow a - 2\sqrt {bc} = b + c \\
\Rightarrow a - 2\sqrt {bc} + 2\sqrt {bc} = b + c + 2\sqrt {bc} \\
\Rightarrow a = b + c + 2\sqrt {bc} \;
$
Since, we know that $ \sqrt x .\sqrt x = x $ , so $ b, c $ and $ a $ can be written as $ b = {\left( {\sqrt b } \right)^2} $ , $ a = {\left( {\sqrt a } \right)^2} $ , $ c = {\left( {\sqrt c } \right)^2} $ .
Substituting these values in the above equation, we get:
$
\Rightarrow a = b + c + 2\sqrt {bc} \\
\Rightarrow {\left( {\sqrt a } \right)^2} = {\left( {\sqrt b } \right)^2} + {\left( {\sqrt c } \right)^2} + 2\sqrt {bc} \;
$
On the right-hand side, we can see that it perfectly suits the formula: $ {\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy $ .
So, replacing $ {\left( {\sqrt b } \right)^2} + {\left( {\sqrt c } \right)^2} + 2\sqrt {bc} $ by $ {\left( {\sqrt b + \sqrt c } \right)^2} $ , we write it as:
$ {\left( {\sqrt a } \right)^2} = {\left( {\sqrt b + \sqrt c } \right)^2} $
Subtracting both the sides by $ {\left( {\sqrt b + \sqrt c } \right)^2} $ , we get:
$
{\left( {\sqrt a } \right)^2} - {\left( {\sqrt b + \sqrt c } \right)^2} = {\left( {\sqrt b + \sqrt c } \right)^2} - {\left( {\sqrt b + \sqrt c } \right)^2} \\
\Rightarrow {\left( {\sqrt a } \right)^2} - {\left( {\sqrt b + \sqrt c } \right)^2} = 0 \;
$
Since, we know that $ {x^2} - {y^2} = \left( {x + y} \right)\left( {x - y} \right) $ , so applying this in the above equation:
$
{\left( {\sqrt a } \right)^2} - {\left( {\sqrt b + \sqrt c } \right)^2} = 0 \\
\Rightarrow \left( {\sqrt a + \left( {\sqrt b + \sqrt c } \right)} \right)\left( {\sqrt a - \left( {\sqrt b + \sqrt c } \right)} \right) = 0 \\
$
Opening the inner parenthesis:
$
\left( {\sqrt a + \left( {\sqrt b + \sqrt c } \right)} \right)\left( {\sqrt a - \left( {\sqrt b + \sqrt c } \right)} \right) = 0 \\
\Rightarrow \left( {\sqrt a + \sqrt b + \sqrt c } \right)\left( {\sqrt a - \sqrt b - \sqrt c } \right) = 0 \;
$
So, from the above equation, we can see that either $ \left( {\sqrt a + \sqrt b + \sqrt c } \right) = 0 $ or $ \left( {\sqrt a - \sqrt b - \sqrt c } \right) = 0 $ .
But it’s given that $ a,b,c > 0 $ , that implies $ \left( {\sqrt a + \sqrt b + \sqrt c } \right) \ne 0 $ as the square root values will give a positive number and when added, the terms would never result into zero.
That gives $ \left( {\sqrt a - \sqrt b - \sqrt c } \right) = 0 $ , taking $ - 1 $ common from the equation and which can be written as
$
\Rightarrow \left( {\sqrt a - \sqrt b - \sqrt c } \right) = 0 \\
\Rightarrow - 1\left( { - \sqrt a + \sqrt b + \sqrt c } \right) = 0 \;
$ .
Dividing both sides by $ - 1 $ , we get:
$ \Rightarrow \left( { - 1} \right)\sqrt a + \sqrt b \left( 1 \right) + \sqrt c = 0 $
Since, it’s given that the family of lines passes through the fixed point, so the equations would be the same.
So, comparing $ \left( { - 1} \right)\sqrt a + \sqrt b \left( 1 \right) + \sqrt c = 0 $ with another equation given $ \sqrt a x + \sqrt b y + \sqrt c = 0 $ , we get:
$
x = - 1 \\
y = 1 \;
$
Therefore, the fixed point becomes $ \left( {x,y} \right) = \left( { - 1,1} \right) $ , which matches with the option D.
Hence, Option D is correct.
So, the correct answer is “Option D”.
Note: It’s always preferred to solve step by step for ease, rather than solving at once, otherwise it would lead to confusion and there is a huge chance of error.
Writing of roots from one form to another is mandatory, like $ \sqrt {\dfrac{b}{c}} = \dfrac{{\sqrt b }}{{\sqrt c }} $ and $ \sqrt {bc} = \sqrt b \sqrt c $.
Complete step by step solution:
We are given with an equation $ \dfrac{a}{{\sqrt {bc} }} - 2 = \sqrt {\dfrac{b}{c}} + \sqrt {\dfrac{c}{b}} $ .
Solving this equation, step by step:
For that multiplying and dividing $ - 2 $ by $ \sqrt {bc} $ , in order to have a common denominator on the left side, and we get:
$
\dfrac{a}{{\sqrt {bc} }} - 2\dfrac{{\sqrt {bc} }}{{\sqrt {bc} }} = \sqrt {\dfrac{b}{c}} + \sqrt {\dfrac{c}{b}} \\
\Rightarrow \dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} = \sqrt {\dfrac{b}{c}} + \sqrt {\dfrac{c}{b}} \;
$
Since, we know that roots can be written as $ \sqrt {\dfrac{b}{c}} = \dfrac{{\sqrt b }}{{\sqrt c }} $ and $ \sqrt {bc} = \sqrt b \sqrt c $ .
So, using this writing the right-side equation as:
$ \dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} = \dfrac{{\sqrt b }}{{\sqrt c }} + \dfrac{{\sqrt c }}{{\sqrt b }} $
Multiplying and dividing the first operand on the right side by $ \sqrt b $ , and multiplying and dividing the second operand on the right side by $ \sqrt c $ , in order to get a common denominator:
Applying this, we get:
$ \dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} = \dfrac{{\sqrt b }}{{\sqrt c }} \times \dfrac{{\sqrt b }}{{\sqrt b }} + \dfrac{{\sqrt c }}{{\sqrt b }} \times \dfrac{{\sqrt c }}{{\sqrt c }} $
Solving the right-hand side:
Since, we know that $ \sqrt x .\sqrt x = x $ , that implies:
$
\dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} = \dfrac{b}{{\sqrt {bc} }} + \dfrac{c}{{\sqrt {bc} }} \\
\Rightarrow \dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} = \dfrac{{b + c}}{{\sqrt {bc} }} \;
$
Multiplying both the sides by $ \sqrt {bc} $ :
$
\dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} \times \sqrt {bc} = \dfrac{{b + c}}{{\sqrt {bc} }} \times \sqrt {bc} \\
\Rightarrow a - 2\sqrt {bc} = b + c \;
$
Adding both the sides by $ 2\sqrt {bc} $ :
$
\Rightarrow a - 2\sqrt {bc} = b + c \\
\Rightarrow a - 2\sqrt {bc} + 2\sqrt {bc} = b + c + 2\sqrt {bc} \\
\Rightarrow a = b + c + 2\sqrt {bc} \;
$
Since, we know that $ \sqrt x .\sqrt x = x $ , so $ b, c $ and $ a $ can be written as $ b = {\left( {\sqrt b } \right)^2} $ , $ a = {\left( {\sqrt a } \right)^2} $ , $ c = {\left( {\sqrt c } \right)^2} $ .
Substituting these values in the above equation, we get:
$
\Rightarrow a = b + c + 2\sqrt {bc} \\
\Rightarrow {\left( {\sqrt a } \right)^2} = {\left( {\sqrt b } \right)^2} + {\left( {\sqrt c } \right)^2} + 2\sqrt {bc} \;
$
On the right-hand side, we can see that it perfectly suits the formula: $ {\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy $ .
So, replacing $ {\left( {\sqrt b } \right)^2} + {\left( {\sqrt c } \right)^2} + 2\sqrt {bc} $ by $ {\left( {\sqrt b + \sqrt c } \right)^2} $ , we write it as:
$ {\left( {\sqrt a } \right)^2} = {\left( {\sqrt b + \sqrt c } \right)^2} $
Subtracting both the sides by $ {\left( {\sqrt b + \sqrt c } \right)^2} $ , we get:
$
{\left( {\sqrt a } \right)^2} - {\left( {\sqrt b + \sqrt c } \right)^2} = {\left( {\sqrt b + \sqrt c } \right)^2} - {\left( {\sqrt b + \sqrt c } \right)^2} \\
\Rightarrow {\left( {\sqrt a } \right)^2} - {\left( {\sqrt b + \sqrt c } \right)^2} = 0 \;
$
Since, we know that $ {x^2} - {y^2} = \left( {x + y} \right)\left( {x - y} \right) $ , so applying this in the above equation:
$
{\left( {\sqrt a } \right)^2} - {\left( {\sqrt b + \sqrt c } \right)^2} = 0 \\
\Rightarrow \left( {\sqrt a + \left( {\sqrt b + \sqrt c } \right)} \right)\left( {\sqrt a - \left( {\sqrt b + \sqrt c } \right)} \right) = 0 \\
$
Opening the inner parenthesis:
$
\left( {\sqrt a + \left( {\sqrt b + \sqrt c } \right)} \right)\left( {\sqrt a - \left( {\sqrt b + \sqrt c } \right)} \right) = 0 \\
\Rightarrow \left( {\sqrt a + \sqrt b + \sqrt c } \right)\left( {\sqrt a - \sqrt b - \sqrt c } \right) = 0 \;
$
So, from the above equation, we can see that either $ \left( {\sqrt a + \sqrt b + \sqrt c } \right) = 0 $ or $ \left( {\sqrt a - \sqrt b - \sqrt c } \right) = 0 $ .
But it’s given that $ a,b,c > 0 $ , that implies $ \left( {\sqrt a + \sqrt b + \sqrt c } \right) \ne 0 $ as the square root values will give a positive number and when added, the terms would never result into zero.
That gives $ \left( {\sqrt a - \sqrt b - \sqrt c } \right) = 0 $ , taking $ - 1 $ common from the equation and which can be written as
$
\Rightarrow \left( {\sqrt a - \sqrt b - \sqrt c } \right) = 0 \\
\Rightarrow - 1\left( { - \sqrt a + \sqrt b + \sqrt c } \right) = 0 \;
$ .
Dividing both sides by $ - 1 $ , we get:
$ \Rightarrow \left( { - 1} \right)\sqrt a + \sqrt b \left( 1 \right) + \sqrt c = 0 $
Since, it’s given that the family of lines passes through the fixed point, so the equations would be the same.
So, comparing $ \left( { - 1} \right)\sqrt a + \sqrt b \left( 1 \right) + \sqrt c = 0 $ with another equation given $ \sqrt a x + \sqrt b y + \sqrt c = 0 $ , we get:
$
x = - 1 \\
y = 1 \;
$
Therefore, the fixed point becomes $ \left( {x,y} \right) = \left( { - 1,1} \right) $ , which matches with the option D.
Hence, Option D is correct.
So, the correct answer is “Option D”.
Note: It’s always preferred to solve step by step for ease, rather than solving at once, otherwise it would lead to confusion and there is a huge chance of error.
Writing of roots from one form to another is mandatory, like $ \sqrt {\dfrac{b}{c}} = \dfrac{{\sqrt b }}{{\sqrt c }} $ and $ \sqrt {bc} = \sqrt b \sqrt c $.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

