Answer
Verified
426.3k+ views
Hint: To find the value of $\left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right|$, we have to convert it in the form of \[\dfrac{{{z}_{2}}}{{{z}_{1}}}\] using appropriate operations, because we know the values of \[\dfrac{{{z}_{2}}}{{{z}_{1}}}\]. Also, we have to make use of the formula |z|= \[\sqrt{{{a}^{2}}+{{b}^{2}}}\] where |z| is called modulus of \[z=a+ib\]
Complete step by step answer:
The question demands that, we have to find the value of the term $\left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right|$. Let the value of this term be ‘y’. Therefore, we will get,
\[y=\left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right|.............(i)\]
We are also given in question that $\dfrac{5{{z}_{2}}}{7{{z}_{1}}}$ is purely imaginary. This means we can say that we can represent $\dfrac{5{{z}_{2}}}{7{{z}_{1}}}$ solely in terms of I (iota). Thus,
$\dfrac{5{{z}_{2}}}{7{{z}_{1}}}$= \[ki\]
Where, k is any real number. We can also write the above equation as:
\[\dfrac{{{z}_{2}}}{{{z}_{1}}}=\dfrac{7ki}{5}...............(ii)\]
Now we come back to equation (i). Now we will divide both the numerator and denominator by ‘z’. After doing this we get: -
\[y=\left| \begin{align}
& \dfrac{2{{z}_{1}}+3{{z}_{x}}}{{{z}_{1}}} \\
& \overline{\,\,\dfrac{2{{z}_{1}}+3{{z}_{z}}}{{{z}_{1}}}} \\
\end{align} \right|\]
\[\Rightarrow y=\left| \dfrac{2+3\left( \dfrac{{{z}_{2}}}{{{z}_{1}}} \right)}{2-3\left( \dfrac{{{z}_{2}}}{{{z}_{1}}} \right)} \right|..................(iii)\]
Now, we will substitute value of \[\left( \dfrac{{{z}_{2}}}{{{z}_{1}}} \right)\] from equation (ii) into equation (iii). After doing this we will get:
$\Rightarrow y=\left| \dfrac{2+3\left( \dfrac{7{{k}_{1}}}{5} \right)}{2-3\left( \dfrac{7{{k}_{1}}}{5} \right)} \right|$
On simplifying we will get: -
$\Rightarrow y=\left| \dfrac{2+\dfrac{21ki}{5}}{2-\dfrac{21ki}{5}} \right|$
On taking Lcm and cancelling 5 from both numerator and denominator, we get: -
$\Rightarrow y=\left| \dfrac{10+21ki}{10-21ki} \right|.............(iv)$
Here, we are going to use a property of modulus which is shown below:
$\dfrac{|{{z}_{1}}|}{|{{z}_{2}}|}=\dfrac{|{{z}_{1}}|}{|{{z}_{2}}|}$
In our case ${{z}_{1}}=10+21ki$ and ${{z}_{2}}=10-21ki$
After using this identity, we will get:
$\Rightarrow y=\dfrac{|10+21ki|}{|10-21ki|}....................(v)$
In the above equation, we have to find the modulus of two terms in numerator and denominator respectively. If a complex number is z=a+ib then its modulus is given by the formula:
$|z|=\sqrt{{{a}^{2}}+{{b}^{2}}}$
Therefore, using above formula, we get: -
\[\begin{align}
& \Rightarrow y=\dfrac{\sqrt{{{\left( 10 \right)}^{2}}+{{\left( 21k \right)}^{2}}}}{\sqrt{{{\left( 10 \right)}^{2}}+{{\left( -21k \right)}^{2}}}} \\
& \Rightarrow y=\dfrac{\sqrt{100+441{{k}^{2}}}}{\sqrt{100+441{{k}^{2}}}} \\
& \Rightarrow y=1 \\
& \Rightarrow \left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right| \\
\end{align}\]
So, the correct answer is “Option d”.
Note: We cannot use the modulus formula directly in the starting as shown below: -
$\left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right|=\dfrac{\sqrt{{{\left( z \right)}^{2}}+{{\left( 3 \right)}^{2}}}}{\sqrt{{{\left( a \right)}^{2}}+{{\left( -3 \right)}^{2}}}}=\dfrac{\sqrt{13}}{\sqrt{13}}=1$
In this case, the answer is the same but the method is wrong because ${{z}_{1}}$ and ${{z}_{2}}$ are both complex numbers. We will have to convert the numerator and denominator into a single complex number of the form a+ib then only we can apply the modulus formula.
Complete step by step answer:
The question demands that, we have to find the value of the term $\left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right|$. Let the value of this term be ‘y’. Therefore, we will get,
\[y=\left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right|.............(i)\]
We are also given in question that $\dfrac{5{{z}_{2}}}{7{{z}_{1}}}$ is purely imaginary. This means we can say that we can represent $\dfrac{5{{z}_{2}}}{7{{z}_{1}}}$ solely in terms of I (iota). Thus,
$\dfrac{5{{z}_{2}}}{7{{z}_{1}}}$= \[ki\]
Where, k is any real number. We can also write the above equation as:
\[\dfrac{{{z}_{2}}}{{{z}_{1}}}=\dfrac{7ki}{5}...............(ii)\]
Now we come back to equation (i). Now we will divide both the numerator and denominator by ‘z’. After doing this we get: -
\[y=\left| \begin{align}
& \dfrac{2{{z}_{1}}+3{{z}_{x}}}{{{z}_{1}}} \\
& \overline{\,\,\dfrac{2{{z}_{1}}+3{{z}_{z}}}{{{z}_{1}}}} \\
\end{align} \right|\]
\[\Rightarrow y=\left| \dfrac{2+3\left( \dfrac{{{z}_{2}}}{{{z}_{1}}} \right)}{2-3\left( \dfrac{{{z}_{2}}}{{{z}_{1}}} \right)} \right|..................(iii)\]
Now, we will substitute value of \[\left( \dfrac{{{z}_{2}}}{{{z}_{1}}} \right)\] from equation (ii) into equation (iii). After doing this we will get:
$\Rightarrow y=\left| \dfrac{2+3\left( \dfrac{7{{k}_{1}}}{5} \right)}{2-3\left( \dfrac{7{{k}_{1}}}{5} \right)} \right|$
On simplifying we will get: -
$\Rightarrow y=\left| \dfrac{2+\dfrac{21ki}{5}}{2-\dfrac{21ki}{5}} \right|$
On taking Lcm and cancelling 5 from both numerator and denominator, we get: -
$\Rightarrow y=\left| \dfrac{10+21ki}{10-21ki} \right|.............(iv)$
Here, we are going to use a property of modulus which is shown below:
$\dfrac{|{{z}_{1}}|}{|{{z}_{2}}|}=\dfrac{|{{z}_{1}}|}{|{{z}_{2}}|}$
In our case ${{z}_{1}}=10+21ki$ and ${{z}_{2}}=10-21ki$
After using this identity, we will get:
$\Rightarrow y=\dfrac{|10+21ki|}{|10-21ki|}....................(v)$
In the above equation, we have to find the modulus of two terms in numerator and denominator respectively. If a complex number is z=a+ib then its modulus is given by the formula:
$|z|=\sqrt{{{a}^{2}}+{{b}^{2}}}$
Therefore, using above formula, we get: -
\[\begin{align}
& \Rightarrow y=\dfrac{\sqrt{{{\left( 10 \right)}^{2}}+{{\left( 21k \right)}^{2}}}}{\sqrt{{{\left( 10 \right)}^{2}}+{{\left( -21k \right)}^{2}}}} \\
& \Rightarrow y=\dfrac{\sqrt{100+441{{k}^{2}}}}{\sqrt{100+441{{k}^{2}}}} \\
& \Rightarrow y=1 \\
& \Rightarrow \left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right| \\
\end{align}\]
So, the correct answer is “Option d”.
Note: We cannot use the modulus formula directly in the starting as shown below: -
$\left| \dfrac{2{{z}_{1}}+3{{z}_{2}}}{2{{z}_{1}}-3{{z}_{2}}} \right|=\dfrac{\sqrt{{{\left( z \right)}^{2}}+{{\left( 3 \right)}^{2}}}}{\sqrt{{{\left( a \right)}^{2}}+{{\left( -3 \right)}^{2}}}}=\dfrac{\sqrt{13}}{\sqrt{13}}=1$
In this case, the answer is the same but the method is wrong because ${{z}_{1}}$ and ${{z}_{2}}$ are both complex numbers. We will have to convert the numerator and denominator into a single complex number of the form a+ib then only we can apply the modulus formula.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE