
If $\dfrac{1}{{{}^5{C_r}}}{\text{ }} + {\text{ }}\dfrac{1}{{{}^6{C_r}}}{\text{ }} = {\text{ }}\dfrac{1}{{{}^4{C_r}}},$ then the value of r equals to
Answer
609.3k+ views
Hint:- Value of r cannot be more than 4 because in the given equation the minimum value of n involved in ${}^n{C_r}$ is 4.
As we know that for any positive number $n$ and non-negative number $r$
$ \Rightarrow {}^n{C_r}{\text{ }} = {\text{ }}\dfrac{{n!}}{{r!(n{\text{ }} - {\text{ }}r)!}}$ where ${\text{n }} \geqslant {\text{ r}}$.
And as we see that there is ${}^4{C_r}$ in the given expression, so, ${\text{r }} \leqslant {\text{ }}4$.
$ \Rightarrow $Given equation is $\dfrac{1}{{{}^5{C_r}}}{\text{ }} + {\text{ }}\dfrac{1}{{{}^6{C_r}}}{\text{ }} = {\text{ }}\dfrac{1}{{{}^4{C_r}}},$ (1)
So, taking LCM of LHS of equation (1), we get
$ \Rightarrow \dfrac{{{}^6{C_r}{\text{ }} + {\text{ }}{}^5{C_r}}}{{{}^6{C_r}.{}^5{C_r}}}{\text{ }} = {\text{ }}\dfrac{1}{{{}^4{C_r}}}$
Now, for solving above equation, let’s expand \[{}^4{C_r},{\text{ }}{}^5{C_r}\] and \[{}^6{C_r}\].
So, above equation becomes,
\[ \Rightarrow \dfrac{{\dfrac{{6!}}{{r!(6{\text{ }} - {\text{ }}r)!}}{\text{ }} + {\text{ }}\dfrac{{5!}}{{r!(5{\text{ }} - {\text{ }}r)!}}}}{{\dfrac{{6!}}{{r!(6{\text{ }} - {\text{ }}r)!}}*\dfrac{{5!}}{{r!(5{\text{ }} - {\text{ }}r)!}}}}{\text{ = }}\dfrac{1}{{\dfrac{{4!}}{{r!(4{\text{ }} - {\text{ }}r)!}}}}\]
On manipulating above equation, it can be written as,
\[ \Rightarrow \dfrac{{\dfrac{{6*5!}}{{r!*(6{\text{ }} - {\text{ }}r)*(5{\text{ }} - {\text{ }}r)!}}{\text{ }} + {\text{ }}\dfrac{{5!}}{{r!(5{\text{ }} - {\text{ }}r)!}}}}{{\dfrac{{6!}}{{r!(6{\text{ }} - {\text{ }}r)!}}*\dfrac{{5!}}{{r!(5{\text{ }} - {\text{ }}r)!}}}}{\text{ = }}\dfrac{1}{{\dfrac{{4!}}{{r!(4{\text{ }} - {\text{ }}r)!}}}}\]
Taking \[\dfrac{{5!}}{{r!(5{\text{ }} - {\text{ }}r)!}}\] common from the numerator and denominator, we get
$ \Rightarrow \dfrac{{\left( {\dfrac{6}{{6{\text{ }} - {\text{ }}r}}{\text{ }} + {\text{ }}1} \right)}}{{\dfrac{{6!}}{{r!(6{\text{ }} - {\text{ }}r)!}}}}{\text{ }} = {\text{ }}\dfrac{{\left( {\dfrac{{12{\text{ }} - {\text{ }}r}}{{6{\text{ }} - {\text{ }}r}}} \right)}}{{\dfrac{{6!}}{{r!(6{\text{ }} - {\text{ }}r)!}}}}{\text{ }} = {\text{ }}\dfrac{1}{{\dfrac{{4!}}{{r!(4{\text{ }} - {\text{ }}r)!}}}}$
Solving above equation, we get
$ \Rightarrow \left( {\dfrac{{12{\text{ }} - {\text{ }}r}}{{6{\text{ }} - {\text{ }}r}}} \right){\text{ }} = {\text{ }}\dfrac{{\dfrac{{6!}}{{r!.\left( {6{\text{ }} - {\text{ }}r} \right)!}}}}{{\dfrac{{4!}}{{r!.\left( {4{\text{ }} - {\text{ }}r} \right)!}}}}{\text{ }} = {\text{ }}\dfrac{{6*5}}{{\left( {6{\text{ }} - {\text{ }}r} \right)\left( {5{\text{ }} - {\text{ }}r} \right)}}$
So, from above equation, we get
$ \Rightarrow \left( {\dfrac{{12{\text{ }} - {\text{ }}r}}{{6{\text{ }} - {\text{ }}r}}} \right){\text{ }} = {\text{ }}\dfrac{{30}}{{\left( {6{\text{ }} - {\text{ }}r} \right)\left( {5{\text{ }} - {\text{ }}r} \right)}}$ ………... (2)
Now, cross-multiplying equation (2),
$ \Rightarrow \left( {12{\text{ }} - {\text{ }}r} \right)\left( {5{\text{ }} - {\text{ }}r} \right){\text{ }} = {\text{ }}30$ ………...(3)
On solving equation 3 it becomes,
$ \Rightarrow {r^2}{\text{ }} - {\text{ }}17r{\text{ }} + {\text{ }}30{\text{ }} = {\text{ }}0$
Now, we had to solve the above equation to get different values of r possible.
$ \Rightarrow \left( {r{\text{ }} - {\text{ }}15} \right)\left( {r{\text{ }} - {\text{ }}2} \right){\text{ }} = {\text{ }}0$
Hence r can be 15 or 2 but,
As we have said earlier that ${\text{r }} \leqslant {\text{ 4}}$,
$ \Rightarrow $So, the value of r will be. ${\text{r }} = {\text{ }}2$.
Note:- Whenever we come up with this type of problem then efficient and easiest way to get the required value of r is by changing the given equation to a polynomial equation of r by using relation ${}^n{C_r}{\text{ }} = {\text{ }}\dfrac{{n!}}{{r!(n{\text{ }} - {\text{ }}r)!}}$. And then we can get the value of r by after solving the polynomial equation.
As we know that for any positive number $n$ and non-negative number $r$
$ \Rightarrow {}^n{C_r}{\text{ }} = {\text{ }}\dfrac{{n!}}{{r!(n{\text{ }} - {\text{ }}r)!}}$ where ${\text{n }} \geqslant {\text{ r}}$.
And as we see that there is ${}^4{C_r}$ in the given expression, so, ${\text{r }} \leqslant {\text{ }}4$.
$ \Rightarrow $Given equation is $\dfrac{1}{{{}^5{C_r}}}{\text{ }} + {\text{ }}\dfrac{1}{{{}^6{C_r}}}{\text{ }} = {\text{ }}\dfrac{1}{{{}^4{C_r}}},$ (1)
So, taking LCM of LHS of equation (1), we get
$ \Rightarrow \dfrac{{{}^6{C_r}{\text{ }} + {\text{ }}{}^5{C_r}}}{{{}^6{C_r}.{}^5{C_r}}}{\text{ }} = {\text{ }}\dfrac{1}{{{}^4{C_r}}}$
Now, for solving above equation, let’s expand \[{}^4{C_r},{\text{ }}{}^5{C_r}\] and \[{}^6{C_r}\].
So, above equation becomes,
\[ \Rightarrow \dfrac{{\dfrac{{6!}}{{r!(6{\text{ }} - {\text{ }}r)!}}{\text{ }} + {\text{ }}\dfrac{{5!}}{{r!(5{\text{ }} - {\text{ }}r)!}}}}{{\dfrac{{6!}}{{r!(6{\text{ }} - {\text{ }}r)!}}*\dfrac{{5!}}{{r!(5{\text{ }} - {\text{ }}r)!}}}}{\text{ = }}\dfrac{1}{{\dfrac{{4!}}{{r!(4{\text{ }} - {\text{ }}r)!}}}}\]
On manipulating above equation, it can be written as,
\[ \Rightarrow \dfrac{{\dfrac{{6*5!}}{{r!*(6{\text{ }} - {\text{ }}r)*(5{\text{ }} - {\text{ }}r)!}}{\text{ }} + {\text{ }}\dfrac{{5!}}{{r!(5{\text{ }} - {\text{ }}r)!}}}}{{\dfrac{{6!}}{{r!(6{\text{ }} - {\text{ }}r)!}}*\dfrac{{5!}}{{r!(5{\text{ }} - {\text{ }}r)!}}}}{\text{ = }}\dfrac{1}{{\dfrac{{4!}}{{r!(4{\text{ }} - {\text{ }}r)!}}}}\]
Taking \[\dfrac{{5!}}{{r!(5{\text{ }} - {\text{ }}r)!}}\] common from the numerator and denominator, we get
$ \Rightarrow \dfrac{{\left( {\dfrac{6}{{6{\text{ }} - {\text{ }}r}}{\text{ }} + {\text{ }}1} \right)}}{{\dfrac{{6!}}{{r!(6{\text{ }} - {\text{ }}r)!}}}}{\text{ }} = {\text{ }}\dfrac{{\left( {\dfrac{{12{\text{ }} - {\text{ }}r}}{{6{\text{ }} - {\text{ }}r}}} \right)}}{{\dfrac{{6!}}{{r!(6{\text{ }} - {\text{ }}r)!}}}}{\text{ }} = {\text{ }}\dfrac{1}{{\dfrac{{4!}}{{r!(4{\text{ }} - {\text{ }}r)!}}}}$
Solving above equation, we get
$ \Rightarrow \left( {\dfrac{{12{\text{ }} - {\text{ }}r}}{{6{\text{ }} - {\text{ }}r}}} \right){\text{ }} = {\text{ }}\dfrac{{\dfrac{{6!}}{{r!.\left( {6{\text{ }} - {\text{ }}r} \right)!}}}}{{\dfrac{{4!}}{{r!.\left( {4{\text{ }} - {\text{ }}r} \right)!}}}}{\text{ }} = {\text{ }}\dfrac{{6*5}}{{\left( {6{\text{ }} - {\text{ }}r} \right)\left( {5{\text{ }} - {\text{ }}r} \right)}}$
So, from above equation, we get
$ \Rightarrow \left( {\dfrac{{12{\text{ }} - {\text{ }}r}}{{6{\text{ }} - {\text{ }}r}}} \right){\text{ }} = {\text{ }}\dfrac{{30}}{{\left( {6{\text{ }} - {\text{ }}r} \right)\left( {5{\text{ }} - {\text{ }}r} \right)}}$ ………... (2)
Now, cross-multiplying equation (2),
$ \Rightarrow \left( {12{\text{ }} - {\text{ }}r} \right)\left( {5{\text{ }} - {\text{ }}r} \right){\text{ }} = {\text{ }}30$ ………...(3)
On solving equation 3 it becomes,
$ \Rightarrow {r^2}{\text{ }} - {\text{ }}17r{\text{ }} + {\text{ }}30{\text{ }} = {\text{ }}0$
Now, we had to solve the above equation to get different values of r possible.
$ \Rightarrow \left( {r{\text{ }} - {\text{ }}15} \right)\left( {r{\text{ }} - {\text{ }}2} \right){\text{ }} = {\text{ }}0$
Hence r can be 15 or 2 but,
As we have said earlier that ${\text{r }} \leqslant {\text{ 4}}$,
$ \Rightarrow $So, the value of r will be. ${\text{r }} = {\text{ }}2$.
Note:- Whenever we come up with this type of problem then efficient and easiest way to get the required value of r is by changing the given equation to a polynomial equation of r by using relation ${}^n{C_r}{\text{ }} = {\text{ }}\dfrac{{n!}}{{r!(n{\text{ }} - {\text{ }}r)!}}$. And then we can get the value of r by after solving the polynomial equation.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

