Answer
Verified
495.6k+ views
Hint:- Value of r cannot be more than 4 because in the given equation the minimum value of n involved in ${}^n{C_r}$ is 4.
As we know that for any positive number $n$ and non-negative number $r$
$ \Rightarrow {}^n{C_r}{\text{ }} = {\text{ }}\dfrac{{n!}}{{r!(n{\text{ }} - {\text{ }}r)!}}$ where ${\text{n }} \geqslant {\text{ r}}$.
And as we see that there is ${}^4{C_r}$ in the given expression, so, ${\text{r }} \leqslant {\text{ }}4$.
$ \Rightarrow $Given equation is $\dfrac{1}{{{}^5{C_r}}}{\text{ }} + {\text{ }}\dfrac{1}{{{}^6{C_r}}}{\text{ }} = {\text{ }}\dfrac{1}{{{}^4{C_r}}},$ (1)
So, taking LCM of LHS of equation (1), we get
$ \Rightarrow \dfrac{{{}^6{C_r}{\text{ }} + {\text{ }}{}^5{C_r}}}{{{}^6{C_r}.{}^5{C_r}}}{\text{ }} = {\text{ }}\dfrac{1}{{{}^4{C_r}}}$
Now, for solving above equation, let’s expand \[{}^4{C_r},{\text{ }}{}^5{C_r}\] and \[{}^6{C_r}\].
So, above equation becomes,
\[ \Rightarrow \dfrac{{\dfrac{{6!}}{{r!(6{\text{ }} - {\text{ }}r)!}}{\text{ }} + {\text{ }}\dfrac{{5!}}{{r!(5{\text{ }} - {\text{ }}r)!}}}}{{\dfrac{{6!}}{{r!(6{\text{ }} - {\text{ }}r)!}}*\dfrac{{5!}}{{r!(5{\text{ }} - {\text{ }}r)!}}}}{\text{ = }}\dfrac{1}{{\dfrac{{4!}}{{r!(4{\text{ }} - {\text{ }}r)!}}}}\]
On manipulating above equation, it can be written as,
\[ \Rightarrow \dfrac{{\dfrac{{6*5!}}{{r!*(6{\text{ }} - {\text{ }}r)*(5{\text{ }} - {\text{ }}r)!}}{\text{ }} + {\text{ }}\dfrac{{5!}}{{r!(5{\text{ }} - {\text{ }}r)!}}}}{{\dfrac{{6!}}{{r!(6{\text{ }} - {\text{ }}r)!}}*\dfrac{{5!}}{{r!(5{\text{ }} - {\text{ }}r)!}}}}{\text{ = }}\dfrac{1}{{\dfrac{{4!}}{{r!(4{\text{ }} - {\text{ }}r)!}}}}\]
Taking \[\dfrac{{5!}}{{r!(5{\text{ }} - {\text{ }}r)!}}\] common from the numerator and denominator, we get
$ \Rightarrow \dfrac{{\left( {\dfrac{6}{{6{\text{ }} - {\text{ }}r}}{\text{ }} + {\text{ }}1} \right)}}{{\dfrac{{6!}}{{r!(6{\text{ }} - {\text{ }}r)!}}}}{\text{ }} = {\text{ }}\dfrac{{\left( {\dfrac{{12{\text{ }} - {\text{ }}r}}{{6{\text{ }} - {\text{ }}r}}} \right)}}{{\dfrac{{6!}}{{r!(6{\text{ }} - {\text{ }}r)!}}}}{\text{ }} = {\text{ }}\dfrac{1}{{\dfrac{{4!}}{{r!(4{\text{ }} - {\text{ }}r)!}}}}$
Solving above equation, we get
$ \Rightarrow \left( {\dfrac{{12{\text{ }} - {\text{ }}r}}{{6{\text{ }} - {\text{ }}r}}} \right){\text{ }} = {\text{ }}\dfrac{{\dfrac{{6!}}{{r!.\left( {6{\text{ }} - {\text{ }}r} \right)!}}}}{{\dfrac{{4!}}{{r!.\left( {4{\text{ }} - {\text{ }}r} \right)!}}}}{\text{ }} = {\text{ }}\dfrac{{6*5}}{{\left( {6{\text{ }} - {\text{ }}r} \right)\left( {5{\text{ }} - {\text{ }}r} \right)}}$
So, from above equation, we get
$ \Rightarrow \left( {\dfrac{{12{\text{ }} - {\text{ }}r}}{{6{\text{ }} - {\text{ }}r}}} \right){\text{ }} = {\text{ }}\dfrac{{30}}{{\left( {6{\text{ }} - {\text{ }}r} \right)\left( {5{\text{ }} - {\text{ }}r} \right)}}$ ………... (2)
Now, cross-multiplying equation (2),
$ \Rightarrow \left( {12{\text{ }} - {\text{ }}r} \right)\left( {5{\text{ }} - {\text{ }}r} \right){\text{ }} = {\text{ }}30$ ………...(3)
On solving equation 3 it becomes,
$ \Rightarrow {r^2}{\text{ }} - {\text{ }}17r{\text{ }} + {\text{ }}30{\text{ }} = {\text{ }}0$
Now, we had to solve the above equation to get different values of r possible.
$ \Rightarrow \left( {r{\text{ }} - {\text{ }}15} \right)\left( {r{\text{ }} - {\text{ }}2} \right){\text{ }} = {\text{ }}0$
Hence r can be 15 or 2 but,
As we have said earlier that ${\text{r }} \leqslant {\text{ 4}}$,
$ \Rightarrow $So, the value of r will be. ${\text{r }} = {\text{ }}2$.
Note:- Whenever we come up with this type of problem then efficient and easiest way to get the required value of r is by changing the given equation to a polynomial equation of r by using relation ${}^n{C_r}{\text{ }} = {\text{ }}\dfrac{{n!}}{{r!(n{\text{ }} - {\text{ }}r)!}}$. And then we can get the value of r by after solving the polynomial equation.
As we know that for any positive number $n$ and non-negative number $r$
$ \Rightarrow {}^n{C_r}{\text{ }} = {\text{ }}\dfrac{{n!}}{{r!(n{\text{ }} - {\text{ }}r)!}}$ where ${\text{n }} \geqslant {\text{ r}}$.
And as we see that there is ${}^4{C_r}$ in the given expression, so, ${\text{r }} \leqslant {\text{ }}4$.
$ \Rightarrow $Given equation is $\dfrac{1}{{{}^5{C_r}}}{\text{ }} + {\text{ }}\dfrac{1}{{{}^6{C_r}}}{\text{ }} = {\text{ }}\dfrac{1}{{{}^4{C_r}}},$ (1)
So, taking LCM of LHS of equation (1), we get
$ \Rightarrow \dfrac{{{}^6{C_r}{\text{ }} + {\text{ }}{}^5{C_r}}}{{{}^6{C_r}.{}^5{C_r}}}{\text{ }} = {\text{ }}\dfrac{1}{{{}^4{C_r}}}$
Now, for solving above equation, let’s expand \[{}^4{C_r},{\text{ }}{}^5{C_r}\] and \[{}^6{C_r}\].
So, above equation becomes,
\[ \Rightarrow \dfrac{{\dfrac{{6!}}{{r!(6{\text{ }} - {\text{ }}r)!}}{\text{ }} + {\text{ }}\dfrac{{5!}}{{r!(5{\text{ }} - {\text{ }}r)!}}}}{{\dfrac{{6!}}{{r!(6{\text{ }} - {\text{ }}r)!}}*\dfrac{{5!}}{{r!(5{\text{ }} - {\text{ }}r)!}}}}{\text{ = }}\dfrac{1}{{\dfrac{{4!}}{{r!(4{\text{ }} - {\text{ }}r)!}}}}\]
On manipulating above equation, it can be written as,
\[ \Rightarrow \dfrac{{\dfrac{{6*5!}}{{r!*(6{\text{ }} - {\text{ }}r)*(5{\text{ }} - {\text{ }}r)!}}{\text{ }} + {\text{ }}\dfrac{{5!}}{{r!(5{\text{ }} - {\text{ }}r)!}}}}{{\dfrac{{6!}}{{r!(6{\text{ }} - {\text{ }}r)!}}*\dfrac{{5!}}{{r!(5{\text{ }} - {\text{ }}r)!}}}}{\text{ = }}\dfrac{1}{{\dfrac{{4!}}{{r!(4{\text{ }} - {\text{ }}r)!}}}}\]
Taking \[\dfrac{{5!}}{{r!(5{\text{ }} - {\text{ }}r)!}}\] common from the numerator and denominator, we get
$ \Rightarrow \dfrac{{\left( {\dfrac{6}{{6{\text{ }} - {\text{ }}r}}{\text{ }} + {\text{ }}1} \right)}}{{\dfrac{{6!}}{{r!(6{\text{ }} - {\text{ }}r)!}}}}{\text{ }} = {\text{ }}\dfrac{{\left( {\dfrac{{12{\text{ }} - {\text{ }}r}}{{6{\text{ }} - {\text{ }}r}}} \right)}}{{\dfrac{{6!}}{{r!(6{\text{ }} - {\text{ }}r)!}}}}{\text{ }} = {\text{ }}\dfrac{1}{{\dfrac{{4!}}{{r!(4{\text{ }} - {\text{ }}r)!}}}}$
Solving above equation, we get
$ \Rightarrow \left( {\dfrac{{12{\text{ }} - {\text{ }}r}}{{6{\text{ }} - {\text{ }}r}}} \right){\text{ }} = {\text{ }}\dfrac{{\dfrac{{6!}}{{r!.\left( {6{\text{ }} - {\text{ }}r} \right)!}}}}{{\dfrac{{4!}}{{r!.\left( {4{\text{ }} - {\text{ }}r} \right)!}}}}{\text{ }} = {\text{ }}\dfrac{{6*5}}{{\left( {6{\text{ }} - {\text{ }}r} \right)\left( {5{\text{ }} - {\text{ }}r} \right)}}$
So, from above equation, we get
$ \Rightarrow \left( {\dfrac{{12{\text{ }} - {\text{ }}r}}{{6{\text{ }} - {\text{ }}r}}} \right){\text{ }} = {\text{ }}\dfrac{{30}}{{\left( {6{\text{ }} - {\text{ }}r} \right)\left( {5{\text{ }} - {\text{ }}r} \right)}}$ ………... (2)
Now, cross-multiplying equation (2),
$ \Rightarrow \left( {12{\text{ }} - {\text{ }}r} \right)\left( {5{\text{ }} - {\text{ }}r} \right){\text{ }} = {\text{ }}30$ ………...(3)
On solving equation 3 it becomes,
$ \Rightarrow {r^2}{\text{ }} - {\text{ }}17r{\text{ }} + {\text{ }}30{\text{ }} = {\text{ }}0$
Now, we had to solve the above equation to get different values of r possible.
$ \Rightarrow \left( {r{\text{ }} - {\text{ }}15} \right)\left( {r{\text{ }} - {\text{ }}2} \right){\text{ }} = {\text{ }}0$
Hence r can be 15 or 2 but,
As we have said earlier that ${\text{r }} \leqslant {\text{ 4}}$,
$ \Rightarrow $So, the value of r will be. ${\text{r }} = {\text{ }}2$.
Note:- Whenever we come up with this type of problem then efficient and easiest way to get the required value of r is by changing the given equation to a polynomial equation of r by using relation ${}^n{C_r}{\text{ }} = {\text{ }}\dfrac{{n!}}{{r!(n{\text{ }} - {\text{ }}r)!}}$. And then we can get the value of r by after solving the polynomial equation.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE