Answer
Verified
491.7k+ views
Hint: First multiply both the equations to form an equation related to RS of what we have to prove. We get an expression for \[mn\]. Secondly, to square and subtract both equations, we get an expression of \[{{m}^{2}}-{{n}^{2}}\]. Square it and prove that \[{{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=mn\].
Complete step-by-step answer:
Here we are given two expressions, make them as equation (1) and equation (2),
\[\begin{align}
& \cot x\left( 1+\sin x \right)=4m-(1) \\
& \cot x\left( 1-\sin x \right)=4n-(2) \\
\end{align}\]
Now let us multiply both equations.
Multiplying the terms in the LHS we get, \[\left[ \cot x\left( 1+\sin x \right) \right]\left[ \cot x\left( 1-\sin x \right) \right]\]
\[={{\cot }^{2}}x\left( 1+\sin x \right)\left( 1-\sin x \right)\]
We know, \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\].
Similarly, if a = 1 and \[b=\sin x\],
\[\left( 1-\sin x \right)\left( 1+\sin x \right)\]becomes\[\Rightarrow 1-{{\sin }^{2}}x\].
\[\begin{align}
& \therefore LHS={{\cot }^{2}}x\left( 1-{{\sin }^{2}}x \right) \\
& RHS=4m\times 4n=16mn \\
\end{align}\]
Therefore by multiplying both equations we get,
\[{{\cot }^{2}}x\left( 1-{{\sin }^{2}}x \right)=16mn-(3)\]
We know that, \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]
\[\therefore {{\cos }^{2}}x=1-{{\sin }^{2}}x\].
Let us substitute \[{{\cos }^{2}}x\]in the place of \[\left( 1-{{\sin }^{2}}x \right)\]in equation (3).
So, equation (3) becomes,
\[{{\cot }^{2}}x{{\cos }^{2}}x=16mn\]
The value of \[\cot x=\dfrac{\cos x}{\sin x}\].
Substituting the value of \[\cot x\], the equation changes to,
\[\begin{align}
& \dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x}\times {{\cos }^{2}}x=16mn \\
& \therefore \dfrac{{{\cos }^{4}}x}{{{\sin }^{2}}x}=16mn \\
\end{align}\]
So, we get the value of \[mn=\dfrac{{{\cos }^{4}}x}{16{{\sin }^{2}}x}-(4)\]
Now let us square equation (1) and equation (2).
Squaring of equation (1) \[\Rightarrow {{\left( 4m \right)}^{2}}={{\cot }^{2}}x{{\left( 1+\sin x \right)}^{2}}\]
\[\Rightarrow 16{{m}^{2}}={{\cot }^{2}}x{{\left( 1+\sin x \right)}^{2}}\]
Squaring of equation (2) \[\Rightarrow {{\left( 4n \right)}^{2}}={{\cot }^{2}}x{{\left( 1-\sin x \right)}^{2}}\]
\[\Rightarrow 16{{n}^{2}}={{\cot }^{2}}x{{\left( 1-\sin x \right)}^{2}}\]
Now, let us subtract both these squared equations, we will get
\[16{{m}^{2}}-16{{n}^{2}}=\left[ {{\cot }^{2}}x{{\left( 1+\sin x \right)}^{2}} \right]-\left[ {{\cot }^{2}}x{{\left( 1-\sin x \right)}^{2}} \right]\]
Expand \[{{\left( 1+\sin x \right)}^{2}}\]and \[{{\left( 1-\sin x \right)}^{2}}\].
\[\begin{align}
& 16\left( {{m}^{2}}-{{n}^{2}} \right)=\left[ {{\cot }^{2}}x\left( 1+2\sin x+{{\sin }^{2}}x \right) \right]-\left[ {{\cot }^{2}}x\left( 1-2\sin x+{{\sin }^{2}}x \right) \right] \\
& 16\left( {{m}^{2}}-{{n}^{2}} \right)={{\cot }^{2}}x+2\sin x{{\cot }^{2}}x+{{\sin }^{2}}x{{\cot }^{2}}x-{{\cot }^{2}}x+2\sin x{{\cot }^{2}}x-{{\cot }^{2}}x{{\sin }^{2}}x \\
\end{align}\]
Cancel out the like terms in LHS of the solution.
\[\begin{align}
& 16\left( {{m}^{2}}-{{n}^{2}} \right)=2\sin x{{\cot }^{2}}x+2\sin x{{\cot }^{2}}x \\
& 16\left( {{m}^{2}}-{{n}^{2}} \right)=4\sin x{{\cot }^{2}}x \\
& {{m}^{2}}-{{n}^{2}}=\dfrac{\sin x{{\cot }^{2}}x}{16}-(5) \\
\end{align}\]
Let us square on both sides of equation (5).
\[{{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=\dfrac{\sin x{{\cot }^{2}}x}{16}\]
We know,\[\cot x=\dfrac{\cos x}{\sin x}\]
\[\begin{align}
& \therefore {{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=\dfrac{{{\sin }^{2}}x\times {{\cos }^{4}}x}{16\times {{\sin }^{4}}x} \\
& \therefore {{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=\dfrac{{{\cos }^{4}}x}{16{{\sin }^{2}}x}-(6) \\
\end{align}\]
Now compare equations (4) and (6).
\[mn=\dfrac{{{\cos }^{4}}x}{16{{\sin }^{2}}x}\]and \[{{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=\dfrac{{{\cos }^{4}}x}{16{{\sin }^{2}}x}\].
\[\therefore {{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=mn\].
Hence proved.
Note: The solution is a bit lengthy, so don’t miss out steps. Remember the basic trigonometric formulas like the value of \[\cot x\], which is used in a lot of places. Don’t confuse between the variables m and n. Be alert while solving problems with more variables. First find an expression for mn by multiplying. Then find the expression for \[{{m}^{2}}-{{n}^{2}}\], by squaring and subtracting the equations.
Complete step-by-step answer:
Here we are given two expressions, make them as equation (1) and equation (2),
\[\begin{align}
& \cot x\left( 1+\sin x \right)=4m-(1) \\
& \cot x\left( 1-\sin x \right)=4n-(2) \\
\end{align}\]
Now let us multiply both equations.
Multiplying the terms in the LHS we get, \[\left[ \cot x\left( 1+\sin x \right) \right]\left[ \cot x\left( 1-\sin x \right) \right]\]
\[={{\cot }^{2}}x\left( 1+\sin x \right)\left( 1-\sin x \right)\]
We know, \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\].
Similarly, if a = 1 and \[b=\sin x\],
\[\left( 1-\sin x \right)\left( 1+\sin x \right)\]becomes\[\Rightarrow 1-{{\sin }^{2}}x\].
\[\begin{align}
& \therefore LHS={{\cot }^{2}}x\left( 1-{{\sin }^{2}}x \right) \\
& RHS=4m\times 4n=16mn \\
\end{align}\]
Therefore by multiplying both equations we get,
\[{{\cot }^{2}}x\left( 1-{{\sin }^{2}}x \right)=16mn-(3)\]
We know that, \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]
\[\therefore {{\cos }^{2}}x=1-{{\sin }^{2}}x\].
Let us substitute \[{{\cos }^{2}}x\]in the place of \[\left( 1-{{\sin }^{2}}x \right)\]in equation (3).
So, equation (3) becomes,
\[{{\cot }^{2}}x{{\cos }^{2}}x=16mn\]
The value of \[\cot x=\dfrac{\cos x}{\sin x}\].
Substituting the value of \[\cot x\], the equation changes to,
\[\begin{align}
& \dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x}\times {{\cos }^{2}}x=16mn \\
& \therefore \dfrac{{{\cos }^{4}}x}{{{\sin }^{2}}x}=16mn \\
\end{align}\]
So, we get the value of \[mn=\dfrac{{{\cos }^{4}}x}{16{{\sin }^{2}}x}-(4)\]
Now let us square equation (1) and equation (2).
Squaring of equation (1) \[\Rightarrow {{\left( 4m \right)}^{2}}={{\cot }^{2}}x{{\left( 1+\sin x \right)}^{2}}\]
\[\Rightarrow 16{{m}^{2}}={{\cot }^{2}}x{{\left( 1+\sin x \right)}^{2}}\]
Squaring of equation (2) \[\Rightarrow {{\left( 4n \right)}^{2}}={{\cot }^{2}}x{{\left( 1-\sin x \right)}^{2}}\]
\[\Rightarrow 16{{n}^{2}}={{\cot }^{2}}x{{\left( 1-\sin x \right)}^{2}}\]
Now, let us subtract both these squared equations, we will get
\[16{{m}^{2}}-16{{n}^{2}}=\left[ {{\cot }^{2}}x{{\left( 1+\sin x \right)}^{2}} \right]-\left[ {{\cot }^{2}}x{{\left( 1-\sin x \right)}^{2}} \right]\]
Expand \[{{\left( 1+\sin x \right)}^{2}}\]and \[{{\left( 1-\sin x \right)}^{2}}\].
\[\begin{align}
& 16\left( {{m}^{2}}-{{n}^{2}} \right)=\left[ {{\cot }^{2}}x\left( 1+2\sin x+{{\sin }^{2}}x \right) \right]-\left[ {{\cot }^{2}}x\left( 1-2\sin x+{{\sin }^{2}}x \right) \right] \\
& 16\left( {{m}^{2}}-{{n}^{2}} \right)={{\cot }^{2}}x+2\sin x{{\cot }^{2}}x+{{\sin }^{2}}x{{\cot }^{2}}x-{{\cot }^{2}}x+2\sin x{{\cot }^{2}}x-{{\cot }^{2}}x{{\sin }^{2}}x \\
\end{align}\]
Cancel out the like terms in LHS of the solution.
\[\begin{align}
& 16\left( {{m}^{2}}-{{n}^{2}} \right)=2\sin x{{\cot }^{2}}x+2\sin x{{\cot }^{2}}x \\
& 16\left( {{m}^{2}}-{{n}^{2}} \right)=4\sin x{{\cot }^{2}}x \\
& {{m}^{2}}-{{n}^{2}}=\dfrac{\sin x{{\cot }^{2}}x}{16}-(5) \\
\end{align}\]
Let us square on both sides of equation (5).
\[{{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=\dfrac{\sin x{{\cot }^{2}}x}{16}\]
We know,\[\cot x=\dfrac{\cos x}{\sin x}\]
\[\begin{align}
& \therefore {{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=\dfrac{{{\sin }^{2}}x\times {{\cos }^{4}}x}{16\times {{\sin }^{4}}x} \\
& \therefore {{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=\dfrac{{{\cos }^{4}}x}{16{{\sin }^{2}}x}-(6) \\
\end{align}\]
Now compare equations (4) and (6).
\[mn=\dfrac{{{\cos }^{4}}x}{16{{\sin }^{2}}x}\]and \[{{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=\dfrac{{{\cos }^{4}}x}{16{{\sin }^{2}}x}\].
\[\therefore {{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=mn\].
Hence proved.
Note: The solution is a bit lengthy, so don’t miss out steps. Remember the basic trigonometric formulas like the value of \[\cot x\], which is used in a lot of places. Don’t confuse between the variables m and n. Be alert while solving problems with more variables. First find an expression for mn by multiplying. Then find the expression for \[{{m}^{2}}-{{n}^{2}}\], by squaring and subtracting the equations.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE