
If \[\cot x\left( 1+\sin x \right)=4m\] and \[\cot x\left( 1-\sin x \right)=4n\], prove that \[{{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=mn\].
Answer
619.8k+ views
Hint: First multiply both the equations to form an equation related to RS of what we have to prove. We get an expression for \[mn\]. Secondly, to square and subtract both equations, we get an expression of \[{{m}^{2}}-{{n}^{2}}\]. Square it and prove that \[{{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=mn\].
Complete step-by-step answer:
Here we are given two expressions, make them as equation (1) and equation (2),
\[\begin{align}
& \cot x\left( 1+\sin x \right)=4m-(1) \\
& \cot x\left( 1-\sin x \right)=4n-(2) \\
\end{align}\]
Now let us multiply both equations.
Multiplying the terms in the LHS we get, \[\left[ \cot x\left( 1+\sin x \right) \right]\left[ \cot x\left( 1-\sin x \right) \right]\]
\[={{\cot }^{2}}x\left( 1+\sin x \right)\left( 1-\sin x \right)\]
We know, \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\].
Similarly, if a = 1 and \[b=\sin x\],
\[\left( 1-\sin x \right)\left( 1+\sin x \right)\]becomes\[\Rightarrow 1-{{\sin }^{2}}x\].
\[\begin{align}
& \therefore LHS={{\cot }^{2}}x\left( 1-{{\sin }^{2}}x \right) \\
& RHS=4m\times 4n=16mn \\
\end{align}\]
Therefore by multiplying both equations we get,
\[{{\cot }^{2}}x\left( 1-{{\sin }^{2}}x \right)=16mn-(3)\]
We know that, \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]
\[\therefore {{\cos }^{2}}x=1-{{\sin }^{2}}x\].
Let us substitute \[{{\cos }^{2}}x\]in the place of \[\left( 1-{{\sin }^{2}}x \right)\]in equation (3).
So, equation (3) becomes,
\[{{\cot }^{2}}x{{\cos }^{2}}x=16mn\]
The value of \[\cot x=\dfrac{\cos x}{\sin x}\].
Substituting the value of \[\cot x\], the equation changes to,
\[\begin{align}
& \dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x}\times {{\cos }^{2}}x=16mn \\
& \therefore \dfrac{{{\cos }^{4}}x}{{{\sin }^{2}}x}=16mn \\
\end{align}\]
So, we get the value of \[mn=\dfrac{{{\cos }^{4}}x}{16{{\sin }^{2}}x}-(4)\]
Now let us square equation (1) and equation (2).
Squaring of equation (1) \[\Rightarrow {{\left( 4m \right)}^{2}}={{\cot }^{2}}x{{\left( 1+\sin x \right)}^{2}}\]
\[\Rightarrow 16{{m}^{2}}={{\cot }^{2}}x{{\left( 1+\sin x \right)}^{2}}\]
Squaring of equation (2) \[\Rightarrow {{\left( 4n \right)}^{2}}={{\cot }^{2}}x{{\left( 1-\sin x \right)}^{2}}\]
\[\Rightarrow 16{{n}^{2}}={{\cot }^{2}}x{{\left( 1-\sin x \right)}^{2}}\]
Now, let us subtract both these squared equations, we will get
\[16{{m}^{2}}-16{{n}^{2}}=\left[ {{\cot }^{2}}x{{\left( 1+\sin x \right)}^{2}} \right]-\left[ {{\cot }^{2}}x{{\left( 1-\sin x \right)}^{2}} \right]\]
Expand \[{{\left( 1+\sin x \right)}^{2}}\]and \[{{\left( 1-\sin x \right)}^{2}}\].
\[\begin{align}
& 16\left( {{m}^{2}}-{{n}^{2}} \right)=\left[ {{\cot }^{2}}x\left( 1+2\sin x+{{\sin }^{2}}x \right) \right]-\left[ {{\cot }^{2}}x\left( 1-2\sin x+{{\sin }^{2}}x \right) \right] \\
& 16\left( {{m}^{2}}-{{n}^{2}} \right)={{\cot }^{2}}x+2\sin x{{\cot }^{2}}x+{{\sin }^{2}}x{{\cot }^{2}}x-{{\cot }^{2}}x+2\sin x{{\cot }^{2}}x-{{\cot }^{2}}x{{\sin }^{2}}x \\
\end{align}\]
Cancel out the like terms in LHS of the solution.
\[\begin{align}
& 16\left( {{m}^{2}}-{{n}^{2}} \right)=2\sin x{{\cot }^{2}}x+2\sin x{{\cot }^{2}}x \\
& 16\left( {{m}^{2}}-{{n}^{2}} \right)=4\sin x{{\cot }^{2}}x \\
& {{m}^{2}}-{{n}^{2}}=\dfrac{\sin x{{\cot }^{2}}x}{16}-(5) \\
\end{align}\]
Let us square on both sides of equation (5).
\[{{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=\dfrac{\sin x{{\cot }^{2}}x}{16}\]
We know,\[\cot x=\dfrac{\cos x}{\sin x}\]
\[\begin{align}
& \therefore {{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=\dfrac{{{\sin }^{2}}x\times {{\cos }^{4}}x}{16\times {{\sin }^{4}}x} \\
& \therefore {{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=\dfrac{{{\cos }^{4}}x}{16{{\sin }^{2}}x}-(6) \\
\end{align}\]
Now compare equations (4) and (6).
\[mn=\dfrac{{{\cos }^{4}}x}{16{{\sin }^{2}}x}\]and \[{{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=\dfrac{{{\cos }^{4}}x}{16{{\sin }^{2}}x}\].
\[\therefore {{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=mn\].
Hence proved.
Note: The solution is a bit lengthy, so don’t miss out steps. Remember the basic trigonometric formulas like the value of \[\cot x\], which is used in a lot of places. Don’t confuse between the variables m and n. Be alert while solving problems with more variables. First find an expression for mn by multiplying. Then find the expression for \[{{m}^{2}}-{{n}^{2}}\], by squaring and subtracting the equations.
Complete step-by-step answer:
Here we are given two expressions, make them as equation (1) and equation (2),
\[\begin{align}
& \cot x\left( 1+\sin x \right)=4m-(1) \\
& \cot x\left( 1-\sin x \right)=4n-(2) \\
\end{align}\]
Now let us multiply both equations.
Multiplying the terms in the LHS we get, \[\left[ \cot x\left( 1+\sin x \right) \right]\left[ \cot x\left( 1-\sin x \right) \right]\]
\[={{\cot }^{2}}x\left( 1+\sin x \right)\left( 1-\sin x \right)\]
We know, \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\].
Similarly, if a = 1 and \[b=\sin x\],
\[\left( 1-\sin x \right)\left( 1+\sin x \right)\]becomes\[\Rightarrow 1-{{\sin }^{2}}x\].
\[\begin{align}
& \therefore LHS={{\cot }^{2}}x\left( 1-{{\sin }^{2}}x \right) \\
& RHS=4m\times 4n=16mn \\
\end{align}\]
Therefore by multiplying both equations we get,
\[{{\cot }^{2}}x\left( 1-{{\sin }^{2}}x \right)=16mn-(3)\]
We know that, \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]
\[\therefore {{\cos }^{2}}x=1-{{\sin }^{2}}x\].
Let us substitute \[{{\cos }^{2}}x\]in the place of \[\left( 1-{{\sin }^{2}}x \right)\]in equation (3).
So, equation (3) becomes,
\[{{\cot }^{2}}x{{\cos }^{2}}x=16mn\]
The value of \[\cot x=\dfrac{\cos x}{\sin x}\].
Substituting the value of \[\cot x\], the equation changes to,
\[\begin{align}
& \dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x}\times {{\cos }^{2}}x=16mn \\
& \therefore \dfrac{{{\cos }^{4}}x}{{{\sin }^{2}}x}=16mn \\
\end{align}\]
So, we get the value of \[mn=\dfrac{{{\cos }^{4}}x}{16{{\sin }^{2}}x}-(4)\]
Now let us square equation (1) and equation (2).
Squaring of equation (1) \[\Rightarrow {{\left( 4m \right)}^{2}}={{\cot }^{2}}x{{\left( 1+\sin x \right)}^{2}}\]
\[\Rightarrow 16{{m}^{2}}={{\cot }^{2}}x{{\left( 1+\sin x \right)}^{2}}\]
Squaring of equation (2) \[\Rightarrow {{\left( 4n \right)}^{2}}={{\cot }^{2}}x{{\left( 1-\sin x \right)}^{2}}\]
\[\Rightarrow 16{{n}^{2}}={{\cot }^{2}}x{{\left( 1-\sin x \right)}^{2}}\]
Now, let us subtract both these squared equations, we will get
\[16{{m}^{2}}-16{{n}^{2}}=\left[ {{\cot }^{2}}x{{\left( 1+\sin x \right)}^{2}} \right]-\left[ {{\cot }^{2}}x{{\left( 1-\sin x \right)}^{2}} \right]\]
Expand \[{{\left( 1+\sin x \right)}^{2}}\]and \[{{\left( 1-\sin x \right)}^{2}}\].
\[\begin{align}
& 16\left( {{m}^{2}}-{{n}^{2}} \right)=\left[ {{\cot }^{2}}x\left( 1+2\sin x+{{\sin }^{2}}x \right) \right]-\left[ {{\cot }^{2}}x\left( 1-2\sin x+{{\sin }^{2}}x \right) \right] \\
& 16\left( {{m}^{2}}-{{n}^{2}} \right)={{\cot }^{2}}x+2\sin x{{\cot }^{2}}x+{{\sin }^{2}}x{{\cot }^{2}}x-{{\cot }^{2}}x+2\sin x{{\cot }^{2}}x-{{\cot }^{2}}x{{\sin }^{2}}x \\
\end{align}\]
Cancel out the like terms in LHS of the solution.
\[\begin{align}
& 16\left( {{m}^{2}}-{{n}^{2}} \right)=2\sin x{{\cot }^{2}}x+2\sin x{{\cot }^{2}}x \\
& 16\left( {{m}^{2}}-{{n}^{2}} \right)=4\sin x{{\cot }^{2}}x \\
& {{m}^{2}}-{{n}^{2}}=\dfrac{\sin x{{\cot }^{2}}x}{16}-(5) \\
\end{align}\]
Let us square on both sides of equation (5).
\[{{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=\dfrac{\sin x{{\cot }^{2}}x}{16}\]
We know,\[\cot x=\dfrac{\cos x}{\sin x}\]
\[\begin{align}
& \therefore {{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=\dfrac{{{\sin }^{2}}x\times {{\cos }^{4}}x}{16\times {{\sin }^{4}}x} \\
& \therefore {{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=\dfrac{{{\cos }^{4}}x}{16{{\sin }^{2}}x}-(6) \\
\end{align}\]
Now compare equations (4) and (6).
\[mn=\dfrac{{{\cos }^{4}}x}{16{{\sin }^{2}}x}\]and \[{{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=\dfrac{{{\cos }^{4}}x}{16{{\sin }^{2}}x}\].
\[\therefore {{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=mn\].
Hence proved.
Note: The solution is a bit lengthy, so don’t miss out steps. Remember the basic trigonometric formulas like the value of \[\cot x\], which is used in a lot of places. Don’t confuse between the variables m and n. Be alert while solving problems with more variables. First find an expression for mn by multiplying. Then find the expression for \[{{m}^{2}}-{{n}^{2}}\], by squaring and subtracting the equations.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

