
If \[\cot x\left( 1+\sin x \right)=4m\] and \[\cot x\left( 1-\sin x \right)=4n\], prove that \[{{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=mn\].
Answer
601.5k+ views
Hint: First multiply both the equations to form an equation related to RS of what we have to prove. We get an expression for \[mn\]. Secondly, to square and subtract both equations, we get an expression of \[{{m}^{2}}-{{n}^{2}}\]. Square it and prove that \[{{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=mn\].
Complete step-by-step answer:
Here we are given two expressions, make them as equation (1) and equation (2),
\[\begin{align}
& \cot x\left( 1+\sin x \right)=4m-(1) \\
& \cot x\left( 1-\sin x \right)=4n-(2) \\
\end{align}\]
Now let us multiply both equations.
Multiplying the terms in the LHS we get, \[\left[ \cot x\left( 1+\sin x \right) \right]\left[ \cot x\left( 1-\sin x \right) \right]\]
\[={{\cot }^{2}}x\left( 1+\sin x \right)\left( 1-\sin x \right)\]
We know, \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\].
Similarly, if a = 1 and \[b=\sin x\],
\[\left( 1-\sin x \right)\left( 1+\sin x \right)\]becomes\[\Rightarrow 1-{{\sin }^{2}}x\].
\[\begin{align}
& \therefore LHS={{\cot }^{2}}x\left( 1-{{\sin }^{2}}x \right) \\
& RHS=4m\times 4n=16mn \\
\end{align}\]
Therefore by multiplying both equations we get,
\[{{\cot }^{2}}x\left( 1-{{\sin }^{2}}x \right)=16mn-(3)\]
We know that, \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]
\[\therefore {{\cos }^{2}}x=1-{{\sin }^{2}}x\].
Let us substitute \[{{\cos }^{2}}x\]in the place of \[\left( 1-{{\sin }^{2}}x \right)\]in equation (3).
So, equation (3) becomes,
\[{{\cot }^{2}}x{{\cos }^{2}}x=16mn\]
The value of \[\cot x=\dfrac{\cos x}{\sin x}\].
Substituting the value of \[\cot x\], the equation changes to,
\[\begin{align}
& \dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x}\times {{\cos }^{2}}x=16mn \\
& \therefore \dfrac{{{\cos }^{4}}x}{{{\sin }^{2}}x}=16mn \\
\end{align}\]
So, we get the value of \[mn=\dfrac{{{\cos }^{4}}x}{16{{\sin }^{2}}x}-(4)\]
Now let us square equation (1) and equation (2).
Squaring of equation (1) \[\Rightarrow {{\left( 4m \right)}^{2}}={{\cot }^{2}}x{{\left( 1+\sin x \right)}^{2}}\]
\[\Rightarrow 16{{m}^{2}}={{\cot }^{2}}x{{\left( 1+\sin x \right)}^{2}}\]
Squaring of equation (2) \[\Rightarrow {{\left( 4n \right)}^{2}}={{\cot }^{2}}x{{\left( 1-\sin x \right)}^{2}}\]
\[\Rightarrow 16{{n}^{2}}={{\cot }^{2}}x{{\left( 1-\sin x \right)}^{2}}\]
Now, let us subtract both these squared equations, we will get
\[16{{m}^{2}}-16{{n}^{2}}=\left[ {{\cot }^{2}}x{{\left( 1+\sin x \right)}^{2}} \right]-\left[ {{\cot }^{2}}x{{\left( 1-\sin x \right)}^{2}} \right]\]
Expand \[{{\left( 1+\sin x \right)}^{2}}\]and \[{{\left( 1-\sin x \right)}^{2}}\].
\[\begin{align}
& 16\left( {{m}^{2}}-{{n}^{2}} \right)=\left[ {{\cot }^{2}}x\left( 1+2\sin x+{{\sin }^{2}}x \right) \right]-\left[ {{\cot }^{2}}x\left( 1-2\sin x+{{\sin }^{2}}x \right) \right] \\
& 16\left( {{m}^{2}}-{{n}^{2}} \right)={{\cot }^{2}}x+2\sin x{{\cot }^{2}}x+{{\sin }^{2}}x{{\cot }^{2}}x-{{\cot }^{2}}x+2\sin x{{\cot }^{2}}x-{{\cot }^{2}}x{{\sin }^{2}}x \\
\end{align}\]
Cancel out the like terms in LHS of the solution.
\[\begin{align}
& 16\left( {{m}^{2}}-{{n}^{2}} \right)=2\sin x{{\cot }^{2}}x+2\sin x{{\cot }^{2}}x \\
& 16\left( {{m}^{2}}-{{n}^{2}} \right)=4\sin x{{\cot }^{2}}x \\
& {{m}^{2}}-{{n}^{2}}=\dfrac{\sin x{{\cot }^{2}}x}{16}-(5) \\
\end{align}\]
Let us square on both sides of equation (5).
\[{{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=\dfrac{\sin x{{\cot }^{2}}x}{16}\]
We know,\[\cot x=\dfrac{\cos x}{\sin x}\]
\[\begin{align}
& \therefore {{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=\dfrac{{{\sin }^{2}}x\times {{\cos }^{4}}x}{16\times {{\sin }^{4}}x} \\
& \therefore {{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=\dfrac{{{\cos }^{4}}x}{16{{\sin }^{2}}x}-(6) \\
\end{align}\]
Now compare equations (4) and (6).
\[mn=\dfrac{{{\cos }^{4}}x}{16{{\sin }^{2}}x}\]and \[{{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=\dfrac{{{\cos }^{4}}x}{16{{\sin }^{2}}x}\].
\[\therefore {{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=mn\].
Hence proved.
Note: The solution is a bit lengthy, so don’t miss out steps. Remember the basic trigonometric formulas like the value of \[\cot x\], which is used in a lot of places. Don’t confuse between the variables m and n. Be alert while solving problems with more variables. First find an expression for mn by multiplying. Then find the expression for \[{{m}^{2}}-{{n}^{2}}\], by squaring and subtracting the equations.
Complete step-by-step answer:
Here we are given two expressions, make them as equation (1) and equation (2),
\[\begin{align}
& \cot x\left( 1+\sin x \right)=4m-(1) \\
& \cot x\left( 1-\sin x \right)=4n-(2) \\
\end{align}\]
Now let us multiply both equations.
Multiplying the terms in the LHS we get, \[\left[ \cot x\left( 1+\sin x \right) \right]\left[ \cot x\left( 1-\sin x \right) \right]\]
\[={{\cot }^{2}}x\left( 1+\sin x \right)\left( 1-\sin x \right)\]
We know, \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\].
Similarly, if a = 1 and \[b=\sin x\],
\[\left( 1-\sin x \right)\left( 1+\sin x \right)\]becomes\[\Rightarrow 1-{{\sin }^{2}}x\].
\[\begin{align}
& \therefore LHS={{\cot }^{2}}x\left( 1-{{\sin }^{2}}x \right) \\
& RHS=4m\times 4n=16mn \\
\end{align}\]
Therefore by multiplying both equations we get,
\[{{\cot }^{2}}x\left( 1-{{\sin }^{2}}x \right)=16mn-(3)\]
We know that, \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]
\[\therefore {{\cos }^{2}}x=1-{{\sin }^{2}}x\].
Let us substitute \[{{\cos }^{2}}x\]in the place of \[\left( 1-{{\sin }^{2}}x \right)\]in equation (3).
So, equation (3) becomes,
\[{{\cot }^{2}}x{{\cos }^{2}}x=16mn\]
The value of \[\cot x=\dfrac{\cos x}{\sin x}\].
Substituting the value of \[\cot x\], the equation changes to,
\[\begin{align}
& \dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x}\times {{\cos }^{2}}x=16mn \\
& \therefore \dfrac{{{\cos }^{4}}x}{{{\sin }^{2}}x}=16mn \\
\end{align}\]
So, we get the value of \[mn=\dfrac{{{\cos }^{4}}x}{16{{\sin }^{2}}x}-(4)\]
Now let us square equation (1) and equation (2).
Squaring of equation (1) \[\Rightarrow {{\left( 4m \right)}^{2}}={{\cot }^{2}}x{{\left( 1+\sin x \right)}^{2}}\]
\[\Rightarrow 16{{m}^{2}}={{\cot }^{2}}x{{\left( 1+\sin x \right)}^{2}}\]
Squaring of equation (2) \[\Rightarrow {{\left( 4n \right)}^{2}}={{\cot }^{2}}x{{\left( 1-\sin x \right)}^{2}}\]
\[\Rightarrow 16{{n}^{2}}={{\cot }^{2}}x{{\left( 1-\sin x \right)}^{2}}\]
Now, let us subtract both these squared equations, we will get
\[16{{m}^{2}}-16{{n}^{2}}=\left[ {{\cot }^{2}}x{{\left( 1+\sin x \right)}^{2}} \right]-\left[ {{\cot }^{2}}x{{\left( 1-\sin x \right)}^{2}} \right]\]
Expand \[{{\left( 1+\sin x \right)}^{2}}\]and \[{{\left( 1-\sin x \right)}^{2}}\].
\[\begin{align}
& 16\left( {{m}^{2}}-{{n}^{2}} \right)=\left[ {{\cot }^{2}}x\left( 1+2\sin x+{{\sin }^{2}}x \right) \right]-\left[ {{\cot }^{2}}x\left( 1-2\sin x+{{\sin }^{2}}x \right) \right] \\
& 16\left( {{m}^{2}}-{{n}^{2}} \right)={{\cot }^{2}}x+2\sin x{{\cot }^{2}}x+{{\sin }^{2}}x{{\cot }^{2}}x-{{\cot }^{2}}x+2\sin x{{\cot }^{2}}x-{{\cot }^{2}}x{{\sin }^{2}}x \\
\end{align}\]
Cancel out the like terms in LHS of the solution.
\[\begin{align}
& 16\left( {{m}^{2}}-{{n}^{2}} \right)=2\sin x{{\cot }^{2}}x+2\sin x{{\cot }^{2}}x \\
& 16\left( {{m}^{2}}-{{n}^{2}} \right)=4\sin x{{\cot }^{2}}x \\
& {{m}^{2}}-{{n}^{2}}=\dfrac{\sin x{{\cot }^{2}}x}{16}-(5) \\
\end{align}\]
Let us square on both sides of equation (5).
\[{{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=\dfrac{\sin x{{\cot }^{2}}x}{16}\]
We know,\[\cot x=\dfrac{\cos x}{\sin x}\]
\[\begin{align}
& \therefore {{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=\dfrac{{{\sin }^{2}}x\times {{\cos }^{4}}x}{16\times {{\sin }^{4}}x} \\
& \therefore {{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=\dfrac{{{\cos }^{4}}x}{16{{\sin }^{2}}x}-(6) \\
\end{align}\]
Now compare equations (4) and (6).
\[mn=\dfrac{{{\cos }^{4}}x}{16{{\sin }^{2}}x}\]and \[{{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=\dfrac{{{\cos }^{4}}x}{16{{\sin }^{2}}x}\].
\[\therefore {{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}=mn\].
Hence proved.
Note: The solution is a bit lengthy, so don’t miss out steps. Remember the basic trigonometric formulas like the value of \[\cot x\], which is used in a lot of places. Don’t confuse between the variables m and n. Be alert while solving problems with more variables. First find an expression for mn by multiplying. Then find the expression for \[{{m}^{2}}-{{n}^{2}}\], by squaring and subtracting the equations.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

