
If ${{\cot }^{-1}}[{{\left( \cos \alpha \right)}^{\dfrac{1}{2}}}]+{{\tan }^{-1}}[{{\left( \cos \alpha \right)}^{\dfrac{1}{2}}}]=x$ . Then find the value of $\sin x$
$\begin{align}
& \text{a) 1} \\
& \text{b) co}{{\text{t}}^{2}}\left( \dfrac{a}{2} \right) \\
& \text{c)}\text{ tan}\alpha \\
& \text{d) cot}\left( \dfrac{\alpha }{2} \right) \\
\end{align}$
Answer
591.9k+ views
Hint: We know that ${{\cot }^{-1}}x+{{\tan }^{-1}}x=\dfrac{\pi }{2}$ hence we get x = \[\dfrac{\pi }{2}\]. Now since we know the value of x. we can easily find the value of sinx.
Complete step by step answer:
Now we are given that ${{\cot }^{-1}}[{{\left( \cos \alpha \right)}^{\dfrac{1}{2}}}]+{{\tan }^{-1}}[{{\left( \cos \alpha \right)}^{\dfrac{1}{2}}}]=x$ .
Let us say ${{\left( \cos \alpha \right)}^{\dfrac{1}{2}}}$ is equal to t.
Now we will note that the range of ${{\cos }^{-1}}\theta $ is $[0,\pi ]$ and hence the output of $\cos \alpha $ is also real
Hence we have $t={{(\cos \alpha )}^{\dfrac{1}{2}}}$ is a real number.
Substituting this in the above equation we get
${{\cot }^{-1}}t+{{\tan }^{-1}}t=x.................(1)$
Now we know that for all real numbers x the identity ${{\cot }^{-1}}x+{{\tan }^{-1}}x=\dfrac{\pi }{2}$ is true.
Now since this identity is true for all real numbers x and does not depend on x this identity is also true for t which is a real number.
Hence applying this to equation (1) we get $x=\dfrac{\pi }{2}$
Hence now we have the value of x is $\dfrac{\pi }{2}$.
Now we have to find the value of $\sin x$
Now since $x=\dfrac{\pi }{2}$ we have $\sin x=\sin \dfrac{\pi }{2}$.
We know that the value of $\sin \dfrac{\pi }{2}$ is 1.
Hence we get the value of $\sin x$ is equal to 1.
So, the correct answer is “Option A”.
Note: Here the equation is given in a confusing format which is nothing but a equation in form of ${{\cot }^{-1}}a+{{\tan }^{-1}}a$ and for that we know the identity = ${{\cot }^{-1}}x+{{\tan }^{-1}}x=\dfrac{\pi }{2}$ we can directly apply it to solve our question.
Complete step by step answer:
Now we are given that ${{\cot }^{-1}}[{{\left( \cos \alpha \right)}^{\dfrac{1}{2}}}]+{{\tan }^{-1}}[{{\left( \cos \alpha \right)}^{\dfrac{1}{2}}}]=x$ .
Let us say ${{\left( \cos \alpha \right)}^{\dfrac{1}{2}}}$ is equal to t.
Now we will note that the range of ${{\cos }^{-1}}\theta $ is $[0,\pi ]$ and hence the output of $\cos \alpha $ is also real
Hence we have $t={{(\cos \alpha )}^{\dfrac{1}{2}}}$ is a real number.
Substituting this in the above equation we get
${{\cot }^{-1}}t+{{\tan }^{-1}}t=x.................(1)$
Now we know that for all real numbers x the identity ${{\cot }^{-1}}x+{{\tan }^{-1}}x=\dfrac{\pi }{2}$ is true.
Now since this identity is true for all real numbers x and does not depend on x this identity is also true for t which is a real number.
Hence applying this to equation (1) we get $x=\dfrac{\pi }{2}$
Hence now we have the value of x is $\dfrac{\pi }{2}$.
Now we have to find the value of $\sin x$
Now since $x=\dfrac{\pi }{2}$ we have $\sin x=\sin \dfrac{\pi }{2}$.
We know that the value of $\sin \dfrac{\pi }{2}$ is 1.
Hence we get the value of $\sin x$ is equal to 1.
So, the correct answer is “Option A”.
Note: Here the equation is given in a confusing format which is nothing but a equation in form of ${{\cot }^{-1}}a+{{\tan }^{-1}}a$ and for that we know the identity = ${{\cot }^{-1}}x+{{\tan }^{-1}}x=\dfrac{\pi }{2}$ we can directly apply it to solve our question.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

