
If $ \cosh (x) = \sec \theta $ , then $ {\tanh ^2}(\dfrac{x}{2}) = $
A. $ {\tan ^2}\dfrac{\theta }{2} $
B. $ {\cot ^2}\dfrac{\theta }{2} $
C. $ - {\tan ^2}\dfrac{\theta }{2} $
D. $ - {\cot ^2}\dfrac{\theta }{2} $
Answer
555.3k+ views
Hint: Hyperbolic functions are defined in terms of the exponential functions; they have similar names to the trigonometric functions. The three main hyperbolic functions are sinhx, coshx and tanhx. Use the definition and identities of these functions to simplify them and you will also require the knowledge of trigonometric identities to find out the correct answer.
Complete step-by-step answer:
We are given that $ \cosh x = \sec \theta $
We know that \[\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}\]
Use this value in the given equation,
$
\dfrac{{{e^x} + {e^{ - x}}}}{2} = \sec \theta \\
\Rightarrow {e^x} + {e^{ - x}} = 2\sec \theta \;
$
We have to find the value of $ {\tanh ^2}\dfrac{x}{2} $ .
We know that $ \tanh x = \dfrac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}} $
That means
$
\tanh \dfrac{x}{2} = \dfrac{{{e^{\dfrac{x}{2}}} - {e^{\dfrac{{ - x}}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{\dfrac{{ - x}}{2}}}}} \\
\Rightarrow {\tanh ^2}(\dfrac{x}{2}) = {(\dfrac{{{e^{\dfrac{x}{2}}} - {e^{\dfrac{{ - x}}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{\dfrac{{ - x}}{2}}}}})^2} \\
{\tanh ^2}\dfrac{x}{2} = \dfrac{{{{({e^{\dfrac{x}{2}}})}^2} + {{({e^{\dfrac{{ - x}}{2}}})}^2} - 2 \times {e^{\dfrac{x}{2}}} \times {e^{\dfrac{{ - x}}{2}}}}}{{{{({e^{\dfrac{x}{2}}})}^2} + {{({e^{\dfrac{{ - x}}{2}}})}^2} + 2 \times {e^{\dfrac{x}{2}}} \times {e^{\dfrac{{ - x}}{2}}}}} \\
{\tanh ^2}\dfrac{x}{2} = \dfrac{{{e^x} + {e^{ - x}} - 2}}{{{e^x} + {e^{ - x}} + 2}} \\
$
Put the value $ {e^x} + {e^{ - x}} = \sec \theta $ in the above equation,
$
{\tanh ^2}\dfrac{x}{2} = \dfrac{{2\sec \theta - 2}}{{2\sec \theta + 2}} \\
{\tanh ^2}\dfrac{x}{2} = \dfrac{{\sec \theta - 1}}{{\sec \theta + 1}} \\
{\tanh ^2}\dfrac{x}{2} = \dfrac{{\dfrac{1}{{\cos \theta }} - 1}}{{\dfrac{1}{{\cos \theta }} + 1}} \\
{\tanh ^2}\dfrac{x}{2} = \dfrac{{1 - \cos \theta }}{{1 + \cos \theta }} \;
$
Now, we know that
$
\cos 2\theta = 1 - 2{\sin ^2}\theta \\
1 - \cos 2\theta = 2{\sin ^2}\theta \\
1 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2} \\
$
Also,
$
\cos 2\theta = 2{\cos ^2}\theta - 1 \\
1 + \cos 2\theta = 2{\cos ^2}\theta \\
1 + \cos \theta = 2{\cos ^2}\dfrac{\theta }{2} \;
$
Putting these values in the obtained equation, we get –
$ {\tanh ^2}\dfrac{x}{2} = \dfrac{{2{{\sin }^2}\dfrac{\theta }{2}}}{{2{{\cos }^2}\dfrac{\theta }{2}}} = {\tan ^2}\dfrac{\theta }{2} $
So, the correct answer is “Option A”.
Note: There are six trigonometric ratios, sine, cosine, tangent, cotangent, cosecant and secant. These six trigonometric ratios are abbreviated as sin, cos, tan, cot, cosec and sec respectively. In hyperbolic functions, the names are the same but their expressions are different. Carefully solve the question, as you may mix up the two functions and get a wrong answer
Complete step-by-step answer:
We are given that $ \cosh x = \sec \theta $
We know that \[\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}\]
Use this value in the given equation,
$
\dfrac{{{e^x} + {e^{ - x}}}}{2} = \sec \theta \\
\Rightarrow {e^x} + {e^{ - x}} = 2\sec \theta \;
$
We have to find the value of $ {\tanh ^2}\dfrac{x}{2} $ .
We know that $ \tanh x = \dfrac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}} $
That means
$
\tanh \dfrac{x}{2} = \dfrac{{{e^{\dfrac{x}{2}}} - {e^{\dfrac{{ - x}}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{\dfrac{{ - x}}{2}}}}} \\
\Rightarrow {\tanh ^2}(\dfrac{x}{2}) = {(\dfrac{{{e^{\dfrac{x}{2}}} - {e^{\dfrac{{ - x}}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{\dfrac{{ - x}}{2}}}}})^2} \\
{\tanh ^2}\dfrac{x}{2} = \dfrac{{{{({e^{\dfrac{x}{2}}})}^2} + {{({e^{\dfrac{{ - x}}{2}}})}^2} - 2 \times {e^{\dfrac{x}{2}}} \times {e^{\dfrac{{ - x}}{2}}}}}{{{{({e^{\dfrac{x}{2}}})}^2} + {{({e^{\dfrac{{ - x}}{2}}})}^2} + 2 \times {e^{\dfrac{x}{2}}} \times {e^{\dfrac{{ - x}}{2}}}}} \\
{\tanh ^2}\dfrac{x}{2} = \dfrac{{{e^x} + {e^{ - x}} - 2}}{{{e^x} + {e^{ - x}} + 2}} \\
$
Put the value $ {e^x} + {e^{ - x}} = \sec \theta $ in the above equation,
$
{\tanh ^2}\dfrac{x}{2} = \dfrac{{2\sec \theta - 2}}{{2\sec \theta + 2}} \\
{\tanh ^2}\dfrac{x}{2} = \dfrac{{\sec \theta - 1}}{{\sec \theta + 1}} \\
{\tanh ^2}\dfrac{x}{2} = \dfrac{{\dfrac{1}{{\cos \theta }} - 1}}{{\dfrac{1}{{\cos \theta }} + 1}} \\
{\tanh ^2}\dfrac{x}{2} = \dfrac{{1 - \cos \theta }}{{1 + \cos \theta }} \;
$
Now, we know that
$
\cos 2\theta = 1 - 2{\sin ^2}\theta \\
1 - \cos 2\theta = 2{\sin ^2}\theta \\
1 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2} \\
$
Also,
$
\cos 2\theta = 2{\cos ^2}\theta - 1 \\
1 + \cos 2\theta = 2{\cos ^2}\theta \\
1 + \cos \theta = 2{\cos ^2}\dfrac{\theta }{2} \;
$
Putting these values in the obtained equation, we get –
$ {\tanh ^2}\dfrac{x}{2} = \dfrac{{2{{\sin }^2}\dfrac{\theta }{2}}}{{2{{\cos }^2}\dfrac{\theta }{2}}} = {\tan ^2}\dfrac{\theta }{2} $
So, the correct answer is “Option A”.
Note: There are six trigonometric ratios, sine, cosine, tangent, cotangent, cosecant and secant. These six trigonometric ratios are abbreviated as sin, cos, tan, cot, cosec and sec respectively. In hyperbolic functions, the names are the same but their expressions are different. Carefully solve the question, as you may mix up the two functions and get a wrong answer
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

