
If $ \cosh (x) = \sec \theta $ , then $ {\tanh ^2}(\dfrac{x}{2}) = $
A. $ {\tan ^2}\dfrac{\theta }{2} $
B. $ {\cot ^2}\dfrac{\theta }{2} $
C. $ - {\tan ^2}\dfrac{\theta }{2} $
D. $ - {\cot ^2}\dfrac{\theta }{2} $
Answer
506.7k+ views
Hint: Hyperbolic functions are defined in terms of the exponential functions; they have similar names to the trigonometric functions. The three main hyperbolic functions are sinhx, coshx and tanhx. Use the definition and identities of these functions to simplify them and you will also require the knowledge of trigonometric identities to find out the correct answer.
Complete step-by-step answer:
We are given that $ \cosh x = \sec \theta $
We know that \[\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}\]
Use this value in the given equation,
$
\dfrac{{{e^x} + {e^{ - x}}}}{2} = \sec \theta \\
\Rightarrow {e^x} + {e^{ - x}} = 2\sec \theta \;
$
We have to find the value of $ {\tanh ^2}\dfrac{x}{2} $ .
We know that $ \tanh x = \dfrac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}} $
That means
$
\tanh \dfrac{x}{2} = \dfrac{{{e^{\dfrac{x}{2}}} - {e^{\dfrac{{ - x}}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{\dfrac{{ - x}}{2}}}}} \\
\Rightarrow {\tanh ^2}(\dfrac{x}{2}) = {(\dfrac{{{e^{\dfrac{x}{2}}} - {e^{\dfrac{{ - x}}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{\dfrac{{ - x}}{2}}}}})^2} \\
{\tanh ^2}\dfrac{x}{2} = \dfrac{{{{({e^{\dfrac{x}{2}}})}^2} + {{({e^{\dfrac{{ - x}}{2}}})}^2} - 2 \times {e^{\dfrac{x}{2}}} \times {e^{\dfrac{{ - x}}{2}}}}}{{{{({e^{\dfrac{x}{2}}})}^2} + {{({e^{\dfrac{{ - x}}{2}}})}^2} + 2 \times {e^{\dfrac{x}{2}}} \times {e^{\dfrac{{ - x}}{2}}}}} \\
{\tanh ^2}\dfrac{x}{2} = \dfrac{{{e^x} + {e^{ - x}} - 2}}{{{e^x} + {e^{ - x}} + 2}} \\
$
Put the value $ {e^x} + {e^{ - x}} = \sec \theta $ in the above equation,
$
{\tanh ^2}\dfrac{x}{2} = \dfrac{{2\sec \theta - 2}}{{2\sec \theta + 2}} \\
{\tanh ^2}\dfrac{x}{2} = \dfrac{{\sec \theta - 1}}{{\sec \theta + 1}} \\
{\tanh ^2}\dfrac{x}{2} = \dfrac{{\dfrac{1}{{\cos \theta }} - 1}}{{\dfrac{1}{{\cos \theta }} + 1}} \\
{\tanh ^2}\dfrac{x}{2} = \dfrac{{1 - \cos \theta }}{{1 + \cos \theta }} \;
$
Now, we know that
$
\cos 2\theta = 1 - 2{\sin ^2}\theta \\
1 - \cos 2\theta = 2{\sin ^2}\theta \\
1 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2} \\
$
Also,
$
\cos 2\theta = 2{\cos ^2}\theta - 1 \\
1 + \cos 2\theta = 2{\cos ^2}\theta \\
1 + \cos \theta = 2{\cos ^2}\dfrac{\theta }{2} \;
$
Putting these values in the obtained equation, we get –
$ {\tanh ^2}\dfrac{x}{2} = \dfrac{{2{{\sin }^2}\dfrac{\theta }{2}}}{{2{{\cos }^2}\dfrac{\theta }{2}}} = {\tan ^2}\dfrac{\theta }{2} $
So, the correct answer is “Option A”.
Note: There are six trigonometric ratios, sine, cosine, tangent, cotangent, cosecant and secant. These six trigonometric ratios are abbreviated as sin, cos, tan, cot, cosec and sec respectively. In hyperbolic functions, the names are the same but their expressions are different. Carefully solve the question, as you may mix up the two functions and get a wrong answer
Complete step-by-step answer:
We are given that $ \cosh x = \sec \theta $
We know that \[\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}\]
Use this value in the given equation,
$
\dfrac{{{e^x} + {e^{ - x}}}}{2} = \sec \theta \\
\Rightarrow {e^x} + {e^{ - x}} = 2\sec \theta \;
$
We have to find the value of $ {\tanh ^2}\dfrac{x}{2} $ .
We know that $ \tanh x = \dfrac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}} $
That means
$
\tanh \dfrac{x}{2} = \dfrac{{{e^{\dfrac{x}{2}}} - {e^{\dfrac{{ - x}}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{\dfrac{{ - x}}{2}}}}} \\
\Rightarrow {\tanh ^2}(\dfrac{x}{2}) = {(\dfrac{{{e^{\dfrac{x}{2}}} - {e^{\dfrac{{ - x}}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{\dfrac{{ - x}}{2}}}}})^2} \\
{\tanh ^2}\dfrac{x}{2} = \dfrac{{{{({e^{\dfrac{x}{2}}})}^2} + {{({e^{\dfrac{{ - x}}{2}}})}^2} - 2 \times {e^{\dfrac{x}{2}}} \times {e^{\dfrac{{ - x}}{2}}}}}{{{{({e^{\dfrac{x}{2}}})}^2} + {{({e^{\dfrac{{ - x}}{2}}})}^2} + 2 \times {e^{\dfrac{x}{2}}} \times {e^{\dfrac{{ - x}}{2}}}}} \\
{\tanh ^2}\dfrac{x}{2} = \dfrac{{{e^x} + {e^{ - x}} - 2}}{{{e^x} + {e^{ - x}} + 2}} \\
$
Put the value $ {e^x} + {e^{ - x}} = \sec \theta $ in the above equation,
$
{\tanh ^2}\dfrac{x}{2} = \dfrac{{2\sec \theta - 2}}{{2\sec \theta + 2}} \\
{\tanh ^2}\dfrac{x}{2} = \dfrac{{\sec \theta - 1}}{{\sec \theta + 1}} \\
{\tanh ^2}\dfrac{x}{2} = \dfrac{{\dfrac{1}{{\cos \theta }} - 1}}{{\dfrac{1}{{\cos \theta }} + 1}} \\
{\tanh ^2}\dfrac{x}{2} = \dfrac{{1 - \cos \theta }}{{1 + \cos \theta }} \;
$
Now, we know that
$
\cos 2\theta = 1 - 2{\sin ^2}\theta \\
1 - \cos 2\theta = 2{\sin ^2}\theta \\
1 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2} \\
$
Also,
$
\cos 2\theta = 2{\cos ^2}\theta - 1 \\
1 + \cos 2\theta = 2{\cos ^2}\theta \\
1 + \cos \theta = 2{\cos ^2}\dfrac{\theta }{2} \;
$
Putting these values in the obtained equation, we get –
$ {\tanh ^2}\dfrac{x}{2} = \dfrac{{2{{\sin }^2}\dfrac{\theta }{2}}}{{2{{\cos }^2}\dfrac{\theta }{2}}} = {\tan ^2}\dfrac{\theta }{2} $
So, the correct answer is “Option A”.
Note: There are six trigonometric ratios, sine, cosine, tangent, cotangent, cosecant and secant. These six trigonometric ratios are abbreviated as sin, cos, tan, cot, cosec and sec respectively. In hyperbolic functions, the names are the same but their expressions are different. Carefully solve the question, as you may mix up the two functions and get a wrong answer
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
