
If cos(1−i) =a+ib where a, b ∈ R and $ i = \sqrt {{\text{ - 1}}} $ then
A. $ {\text{a = }}\dfrac{1}{2}\left( {e - \dfrac{1}{e}} \right){\text{cos1, b = }}\dfrac{1}{2}\left( {e + \dfrac{1}{e}} \right){\text{sin1}} $
B. $ {\text{a = }}\dfrac{1}{2}\left( {e + \dfrac{1}{e}} \right){\text{cos1, b = }}\dfrac{1}{2}\left( {e - \dfrac{1}{e}} \right){\text{sin1}} $
C. $ {\text{a = }}\dfrac{1}{2}\left( {e + \dfrac{1}{e}} \right){\text{cos1, b = }}\dfrac{1}{2}\left( {e + \dfrac{1}{e}} \right){\text{sin1}} $
D. $ {\text{a = }}\dfrac{1}{2}\left( {e - \dfrac{1}{e}} \right){\text{cos1, b = }}\dfrac{1}{2}\left( {e - \dfrac{1}{e}} \right){\text{sin1}} $
Answer
598.5k+ views
Hint: Proceed the solution of this question first by writing value of $ {\text{cos}}\theta $ in complex exponential form then on putting the value of θ according to given in question, further solving and comparing the real and imaginary part we can reach to our answer.
Complete step-by-step answer:
We know that $ {\text{cos}}\theta $ can be written as complex exponential form as
\[ \Rightarrow {\text{cos}}\theta {\text{ = }}\dfrac{{{e^{i\theta }} + {e^{ - i\theta }}}}{2}\] ………..(1) In the question it is given cos(1−i) so here, value of θ will be equal to (1-i)
So on putting the value of θ = (1-i) in (1)
\[ \Rightarrow {\text{cos(1 - i) = }}\dfrac{{{e^{i{\text{(1 - i)}}}} + {e^{ - i{\text{(1 - i)}}}}}}{2}\]
fFurther
Further solving with the use of $ {{\text{i}}^2} = - 1 $
\[ \Rightarrow {\text{cos(1 - i) = }}\dfrac{{{e^{i + 1}} + {e^{ - i - 1}}}}{2}\]
This can be written as
\[ \Rightarrow {\text{cos(1 - i) = }}\dfrac{{{e^{i + 1}} + {e^{ - (i + 1)}}}}{2}\]
\[ \Rightarrow {\text{ }}\dfrac{{{e^{i + 1}} + {e^{ - (i + 1)}}}}{2}\]
This can be written using exponential simplification
\[ \Rightarrow {\text{ }}\dfrac{{{e^i} \times {e^1} + {e^{ - i}} \times {e^{ - 1}}}}{2}\]
We know that
\[ \Rightarrow {e^{i\theta }} = {\text{cos}}\theta + i\sin \theta {\text{ & }}{e^{ - i\theta }} = {\text{cos}}\theta - i\sin \theta \]
So in the above expression the value of θ is 1 and -1 in 1st and 2nd term respectively.
So replacing \[{e^i} = \cos 1 + i\sin 1 \ and \ { e^{ - i}} = \cos 1 - i\sin 1\]
$ \Rightarrow \dfrac{{{\text{e(cos1 + isin1) + }}{{\text{e}}^{ - 1}}{\text{(cos1 - isin1)}}}}{2} $
Separate real and imaginary part
$ \Rightarrow \dfrac{{\left( {{\text{e + }}{{\text{e}}^{ - 1}}} \right){\text{cos1}}}}{2}{\text{ + i}}\dfrac{{\left( {{\text{e - }}{{\text{e}}^{ - 1}}} \right){\text{sin1}}}}{2} = a + ib $
Hence on comparing LHS and RHS
$ \Rightarrow {\text{a = }}\dfrac{{\left( {{\text{e + }}{{\text{e}}^{ - 1}}} \right){\text{cos1}}}}{2}{\text{ & b = }}\dfrac{{\left( {{\text{e - }}{{\text{e}}^{ - 1}}} \right){\text{sin1}}}}{2} $
Note- In this particular a student should know that by remembering only this equation\[{e^{i\theta }} = {\text{cos}}\theta + i\sin \theta {\text{ }}\], he can develop all result with slight help of trigonometry. As by replacing θ= - θ, we can get \[{e^{ - i\theta }} = {\text{cos}}\theta - i\sin \theta \]
And adding both \[ \Rightarrow {e^{i\theta }} + {e^{ - i\theta }} = {\text{cos}}\theta + i\sin \theta {\text{ + cos}}\theta - i\sin \theta \]
\[ \Rightarrow {e^{i\theta }} + {e^{ - i\theta }} = 2{\text{cos}}\theta \]
Dividing by 2 , we will get the value of \[{\text{cos}}\theta {\text{ = }}\dfrac{{{e^{i\theta }} + {e^{ - i\theta }}}}{2}\]hence no need to remember anything. Similarly by subtracting \[ \Rightarrow {e^{i\theta }} - {e^{ - i\theta }} = {\text{cos}}\theta + i\sin \theta {\text{ - cos}}\theta + i\sin \theta \] we can find the value of \[\sin \theta {\text{ = }}\dfrac{{{e^{i\theta }} - {e^{ - i\theta }}}}{{2i}}\].
Complete step-by-step answer:
We know that $ {\text{cos}}\theta $ can be written as complex exponential form as
\[ \Rightarrow {\text{cos}}\theta {\text{ = }}\dfrac{{{e^{i\theta }} + {e^{ - i\theta }}}}{2}\] ………..(1) In the question it is given cos(1−i) so here, value of θ will be equal to (1-i)
So on putting the value of θ = (1-i) in (1)
\[ \Rightarrow {\text{cos(1 - i) = }}\dfrac{{{e^{i{\text{(1 - i)}}}} + {e^{ - i{\text{(1 - i)}}}}}}{2}\]
fFurther
Further solving with the use of $ {{\text{i}}^2} = - 1 $
\[ \Rightarrow {\text{cos(1 - i) = }}\dfrac{{{e^{i + 1}} + {e^{ - i - 1}}}}{2}\]
This can be written as
\[ \Rightarrow {\text{cos(1 - i) = }}\dfrac{{{e^{i + 1}} + {e^{ - (i + 1)}}}}{2}\]
\[ \Rightarrow {\text{ }}\dfrac{{{e^{i + 1}} + {e^{ - (i + 1)}}}}{2}\]
This can be written using exponential simplification
\[ \Rightarrow {\text{ }}\dfrac{{{e^i} \times {e^1} + {e^{ - i}} \times {e^{ - 1}}}}{2}\]
We know that
\[ \Rightarrow {e^{i\theta }} = {\text{cos}}\theta + i\sin \theta {\text{ & }}{e^{ - i\theta }} = {\text{cos}}\theta - i\sin \theta \]
So in the above expression the value of θ is 1 and -1 in 1st and 2nd term respectively.
So replacing \[{e^i} = \cos 1 + i\sin 1 \ and \ { e^{ - i}} = \cos 1 - i\sin 1\]
$ \Rightarrow \dfrac{{{\text{e(cos1 + isin1) + }}{{\text{e}}^{ - 1}}{\text{(cos1 - isin1)}}}}{2} $
Separate real and imaginary part
$ \Rightarrow \dfrac{{\left( {{\text{e + }}{{\text{e}}^{ - 1}}} \right){\text{cos1}}}}{2}{\text{ + i}}\dfrac{{\left( {{\text{e - }}{{\text{e}}^{ - 1}}} \right){\text{sin1}}}}{2} = a + ib $
Hence on comparing LHS and RHS
$ \Rightarrow {\text{a = }}\dfrac{{\left( {{\text{e + }}{{\text{e}}^{ - 1}}} \right){\text{cos1}}}}{2}{\text{ & b = }}\dfrac{{\left( {{\text{e - }}{{\text{e}}^{ - 1}}} \right){\text{sin1}}}}{2} $
Note- In this particular a student should know that by remembering only this equation\[{e^{i\theta }} = {\text{cos}}\theta + i\sin \theta {\text{ }}\], he can develop all result with slight help of trigonometry. As by replacing θ= - θ, we can get \[{e^{ - i\theta }} = {\text{cos}}\theta - i\sin \theta \]
And adding both \[ \Rightarrow {e^{i\theta }} + {e^{ - i\theta }} = {\text{cos}}\theta + i\sin \theta {\text{ + cos}}\theta - i\sin \theta \]
\[ \Rightarrow {e^{i\theta }} + {e^{ - i\theta }} = 2{\text{cos}}\theta \]
Dividing by 2 , we will get the value of \[{\text{cos}}\theta {\text{ = }}\dfrac{{{e^{i\theta }} + {e^{ - i\theta }}}}{2}\]hence no need to remember anything. Similarly by subtracting \[ \Rightarrow {e^{i\theta }} - {e^{ - i\theta }} = {\text{cos}}\theta + i\sin \theta {\text{ - cos}}\theta + i\sin \theta \] we can find the value of \[\sin \theta {\text{ = }}\dfrac{{{e^{i\theta }} - {e^{ - i\theta }}}}{{2i}}\].
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

