
If cos(1−i) =a+ib where a, b ∈ R and $ i = \sqrt {{\text{ - 1}}} $ then
A. $ {\text{a = }}\dfrac{1}{2}\left( {e - \dfrac{1}{e}} \right){\text{cos1, b = }}\dfrac{1}{2}\left( {e + \dfrac{1}{e}} \right){\text{sin1}} $
B. $ {\text{a = }}\dfrac{1}{2}\left( {e + \dfrac{1}{e}} \right){\text{cos1, b = }}\dfrac{1}{2}\left( {e - \dfrac{1}{e}} \right){\text{sin1}} $
C. $ {\text{a = }}\dfrac{1}{2}\left( {e + \dfrac{1}{e}} \right){\text{cos1, b = }}\dfrac{1}{2}\left( {e + \dfrac{1}{e}} \right){\text{sin1}} $
D. $ {\text{a = }}\dfrac{1}{2}\left( {e - \dfrac{1}{e}} \right){\text{cos1, b = }}\dfrac{1}{2}\left( {e - \dfrac{1}{e}} \right){\text{sin1}} $
Answer
516k+ views
Hint: Proceed the solution of this question first by writing value of $ {\text{cos}}\theta $ in complex exponential form then on putting the value of θ according to given in question, further solving and comparing the real and imaginary part we can reach to our answer.
Complete step-by-step answer:
We know that $ {\text{cos}}\theta $ can be written as complex exponential form as
\[ \Rightarrow {\text{cos}}\theta {\text{ = }}\dfrac{{{e^{i\theta }} + {e^{ - i\theta }}}}{2}\] ………..(1) In the question it is given cos(1−i) so here, value of θ will be equal to (1-i)
So on putting the value of θ = (1-i) in (1)
\[ \Rightarrow {\text{cos(1 - i) = }}\dfrac{{{e^{i{\text{(1 - i)}}}} + {e^{ - i{\text{(1 - i)}}}}}}{2}\]
fFurther
Further solving with the use of $ {{\text{i}}^2} = - 1 $
\[ \Rightarrow {\text{cos(1 - i) = }}\dfrac{{{e^{i + 1}} + {e^{ - i - 1}}}}{2}\]
This can be written as
\[ \Rightarrow {\text{cos(1 - i) = }}\dfrac{{{e^{i + 1}} + {e^{ - (i + 1)}}}}{2}\]
\[ \Rightarrow {\text{ }}\dfrac{{{e^{i + 1}} + {e^{ - (i + 1)}}}}{2}\]
This can be written using exponential simplification
\[ \Rightarrow {\text{ }}\dfrac{{{e^i} \times {e^1} + {e^{ - i}} \times {e^{ - 1}}}}{2}\]
We know that
\[ \Rightarrow {e^{i\theta }} = {\text{cos}}\theta + i\sin \theta {\text{ & }}{e^{ - i\theta }} = {\text{cos}}\theta - i\sin \theta \]
So in the above expression the value of θ is 1 and -1 in 1st and 2nd term respectively.
So replacing \[{e^i} = \cos 1 + i\sin 1 \ and \ { e^{ - i}} = \cos 1 - i\sin 1\]
$ \Rightarrow \dfrac{{{\text{e(cos1 + isin1) + }}{{\text{e}}^{ - 1}}{\text{(cos1 - isin1)}}}}{2} $
Separate real and imaginary part
$ \Rightarrow \dfrac{{\left( {{\text{e + }}{{\text{e}}^{ - 1}}} \right){\text{cos1}}}}{2}{\text{ + i}}\dfrac{{\left( {{\text{e - }}{{\text{e}}^{ - 1}}} \right){\text{sin1}}}}{2} = a + ib $
Hence on comparing LHS and RHS
$ \Rightarrow {\text{a = }}\dfrac{{\left( {{\text{e + }}{{\text{e}}^{ - 1}}} \right){\text{cos1}}}}{2}{\text{ & b = }}\dfrac{{\left( {{\text{e - }}{{\text{e}}^{ - 1}}} \right){\text{sin1}}}}{2} $
Note- In this particular a student should know that by remembering only this equation\[{e^{i\theta }} = {\text{cos}}\theta + i\sin \theta {\text{ }}\], he can develop all result with slight help of trigonometry. As by replacing θ= - θ, we can get \[{e^{ - i\theta }} = {\text{cos}}\theta - i\sin \theta \]
And adding both \[ \Rightarrow {e^{i\theta }} + {e^{ - i\theta }} = {\text{cos}}\theta + i\sin \theta {\text{ + cos}}\theta - i\sin \theta \]
\[ \Rightarrow {e^{i\theta }} + {e^{ - i\theta }} = 2{\text{cos}}\theta \]
Dividing by 2 , we will get the value of \[{\text{cos}}\theta {\text{ = }}\dfrac{{{e^{i\theta }} + {e^{ - i\theta }}}}{2}\]hence no need to remember anything. Similarly by subtracting \[ \Rightarrow {e^{i\theta }} - {e^{ - i\theta }} = {\text{cos}}\theta + i\sin \theta {\text{ - cos}}\theta + i\sin \theta \] we can find the value of \[\sin \theta {\text{ = }}\dfrac{{{e^{i\theta }} - {e^{ - i\theta }}}}{{2i}}\].
Complete step-by-step answer:
We know that $ {\text{cos}}\theta $ can be written as complex exponential form as
\[ \Rightarrow {\text{cos}}\theta {\text{ = }}\dfrac{{{e^{i\theta }} + {e^{ - i\theta }}}}{2}\] ………..(1) In the question it is given cos(1−i) so here, value of θ will be equal to (1-i)
So on putting the value of θ = (1-i) in (1)
\[ \Rightarrow {\text{cos(1 - i) = }}\dfrac{{{e^{i{\text{(1 - i)}}}} + {e^{ - i{\text{(1 - i)}}}}}}{2}\]
fFurther
Further solving with the use of $ {{\text{i}}^2} = - 1 $
\[ \Rightarrow {\text{cos(1 - i) = }}\dfrac{{{e^{i + 1}} + {e^{ - i - 1}}}}{2}\]
This can be written as
\[ \Rightarrow {\text{cos(1 - i) = }}\dfrac{{{e^{i + 1}} + {e^{ - (i + 1)}}}}{2}\]
\[ \Rightarrow {\text{ }}\dfrac{{{e^{i + 1}} + {e^{ - (i + 1)}}}}{2}\]
This can be written using exponential simplification
\[ \Rightarrow {\text{ }}\dfrac{{{e^i} \times {e^1} + {e^{ - i}} \times {e^{ - 1}}}}{2}\]
We know that
\[ \Rightarrow {e^{i\theta }} = {\text{cos}}\theta + i\sin \theta {\text{ & }}{e^{ - i\theta }} = {\text{cos}}\theta - i\sin \theta \]
So in the above expression the value of θ is 1 and -1 in 1st and 2nd term respectively.
So replacing \[{e^i} = \cos 1 + i\sin 1 \ and \ { e^{ - i}} = \cos 1 - i\sin 1\]
$ \Rightarrow \dfrac{{{\text{e(cos1 + isin1) + }}{{\text{e}}^{ - 1}}{\text{(cos1 - isin1)}}}}{2} $
Separate real and imaginary part
$ \Rightarrow \dfrac{{\left( {{\text{e + }}{{\text{e}}^{ - 1}}} \right){\text{cos1}}}}{2}{\text{ + i}}\dfrac{{\left( {{\text{e - }}{{\text{e}}^{ - 1}}} \right){\text{sin1}}}}{2} = a + ib $
Hence on comparing LHS and RHS
$ \Rightarrow {\text{a = }}\dfrac{{\left( {{\text{e + }}{{\text{e}}^{ - 1}}} \right){\text{cos1}}}}{2}{\text{ & b = }}\dfrac{{\left( {{\text{e - }}{{\text{e}}^{ - 1}}} \right){\text{sin1}}}}{2} $
Note- In this particular a student should know that by remembering only this equation\[{e^{i\theta }} = {\text{cos}}\theta + i\sin \theta {\text{ }}\], he can develop all result with slight help of trigonometry. As by replacing θ= - θ, we can get \[{e^{ - i\theta }} = {\text{cos}}\theta - i\sin \theta \]
And adding both \[ \Rightarrow {e^{i\theta }} + {e^{ - i\theta }} = {\text{cos}}\theta + i\sin \theta {\text{ + cos}}\theta - i\sin \theta \]
\[ \Rightarrow {e^{i\theta }} + {e^{ - i\theta }} = 2{\text{cos}}\theta \]
Dividing by 2 , we will get the value of \[{\text{cos}}\theta {\text{ = }}\dfrac{{{e^{i\theta }} + {e^{ - i\theta }}}}{2}\]hence no need to remember anything. Similarly by subtracting \[ \Rightarrow {e^{i\theta }} - {e^{ - i\theta }} = {\text{cos}}\theta + i\sin \theta {\text{ - cos}}\theta + i\sin \theta \] we can find the value of \[\sin \theta {\text{ = }}\dfrac{{{e^{i\theta }} - {e^{ - i\theta }}}}{{2i}}\].
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
