
If $\cos x = \dfrac{{ - 1}}{3},$ x in quadrant III. Find the value of $\sin \dfrac{x}{2},\cos \dfrac{x}{2},\tan \dfrac{x}{2}$
Answer
546k+ views
Hint: Here we will first find the range of the angles for the given angle and the range of the angles for the required angle and the quadrant in which it lies. By using the trigonometric formulas and All STC rule will find out the required values.
Complete step-by-step answer:
As, given that – “x” lies in the third quadrant.
$\therefore \pi < x < \dfrac{{3\pi }}{2}$ for “x” lies in the third quadrant.
$ \Rightarrow \dfrac{\pi }{2} < \dfrac{x}{2} < \dfrac{{3\pi }}{4}$for $\dfrac{x}{2}$ lies in the second quadrant.
In the second quadrant sine is positive and cosine is negative.
Now, use the identity –
$
1 - \cos x = 2{\sin ^2}\dfrac{x}{2} \\
\Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 - \cos x}}{2}} \\
$
Place the values in the above equation-
$ \Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 - \left( {\dfrac{{ - 1}}{3}} \right)}}{2}} $
Simplify the above equation –
$
\Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{4}{6}} \\
\Rightarrow \sin \dfrac{x}{2} = \pm \dfrac{{\sqrt 2 }}{{\sqrt 3 }} \\
$
Since the above angle is in the second quadrant.
$\therefore \sin \dfrac{x}{2} = \sqrt {\dfrac{2}{3}} {\text{ }}....{\text{ (A)}}$
Now, use the identity –
$
1 + \cos x = 2co{\operatorname{s} ^2}\dfrac{x}{2} \\
\Rightarrow \cos \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 + \cos x}}{2}} \\
$
Place the values in the above equation-
$ \Rightarrow \cos \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 + \left( {\dfrac{{ - 1}}{3}} \right)}}{2}} $
Simplify the above equation –
$
\Rightarrow \cos \dfrac{x}{2} = \pm \sqrt {\dfrac{1}{3}} \\
\Rightarrow \cos \dfrac{x}{2} = \pm \dfrac{1}{{\sqrt 3 }} \\
$
Since the above angle is in the second quadrant, cosine is negative
$\therefore \cos \dfrac{x}{2} = - \dfrac{1}{{\sqrt 3 }}{\text{ }}....{\text{ (B)}}$
Now, use identity –
$\tan \dfrac{x}{2} = \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}$
Place values in the above equation-
$\tan \dfrac{x}{2} = \dfrac{{\dfrac{{\sqrt 2 }}{{\sqrt 3 }}}}{{ - \dfrac{1}{{\sqrt 3 }}}}$
Like and same terms from the denominator and the numerator cancel each other. So remove them and simplify the fraction.
$ \Rightarrow \tan \dfrac{x}{2} = - \sqrt 2 {\text{ }}....{\text{ (C)}}$
Note: Remember the trigonometric formulas and the correlation between the trigonometric functions to find the unknowns. Also, remember the All STC rule, it is also known as the ASTC rule in geometry. It states that all the trigonometric ratios in the first quadrant ($0^\circ \;{\text{to 90}}^\circ $ ) are positive, sine and cosec are positive in the second quadrant ($90^\circ {\text{ to 180}}^\circ $ ), tan and cot are positive in the third quadrant ($180^\circ \;{\text{to 270}}^\circ $ ) and sin and cosec are positive in the fourth quadrant ($270^\circ {\text{ to 360}}^\circ $ ).
Complete step-by-step answer:
As, given that – “x” lies in the third quadrant.
$\therefore \pi < x < \dfrac{{3\pi }}{2}$ for “x” lies in the third quadrant.
$ \Rightarrow \dfrac{\pi }{2} < \dfrac{x}{2} < \dfrac{{3\pi }}{4}$for $\dfrac{x}{2}$ lies in the second quadrant.
In the second quadrant sine is positive and cosine is negative.
Now, use the identity –
$
1 - \cos x = 2{\sin ^2}\dfrac{x}{2} \\
\Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 - \cos x}}{2}} \\
$
Place the values in the above equation-
$ \Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 - \left( {\dfrac{{ - 1}}{3}} \right)}}{2}} $
Simplify the above equation –
$
\Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{4}{6}} \\
\Rightarrow \sin \dfrac{x}{2} = \pm \dfrac{{\sqrt 2 }}{{\sqrt 3 }} \\
$
Since the above angle is in the second quadrant.
$\therefore \sin \dfrac{x}{2} = \sqrt {\dfrac{2}{3}} {\text{ }}....{\text{ (A)}}$
Now, use the identity –
$
1 + \cos x = 2co{\operatorname{s} ^2}\dfrac{x}{2} \\
\Rightarrow \cos \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 + \cos x}}{2}} \\
$
Place the values in the above equation-
$ \Rightarrow \cos \dfrac{x}{2} = \pm \sqrt {\dfrac{{1 + \left( {\dfrac{{ - 1}}{3}} \right)}}{2}} $
Simplify the above equation –
$
\Rightarrow \cos \dfrac{x}{2} = \pm \sqrt {\dfrac{1}{3}} \\
\Rightarrow \cos \dfrac{x}{2} = \pm \dfrac{1}{{\sqrt 3 }} \\
$
Since the above angle is in the second quadrant, cosine is negative
$\therefore \cos \dfrac{x}{2} = - \dfrac{1}{{\sqrt 3 }}{\text{ }}....{\text{ (B)}}$
Now, use identity –
$\tan \dfrac{x}{2} = \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}$
Place values in the above equation-
$\tan \dfrac{x}{2} = \dfrac{{\dfrac{{\sqrt 2 }}{{\sqrt 3 }}}}{{ - \dfrac{1}{{\sqrt 3 }}}}$
Like and same terms from the denominator and the numerator cancel each other. So remove them and simplify the fraction.
$ \Rightarrow \tan \dfrac{x}{2} = - \sqrt 2 {\text{ }}....{\text{ (C)}}$
Note: Remember the trigonometric formulas and the correlation between the trigonometric functions to find the unknowns. Also, remember the All STC rule, it is also known as the ASTC rule in geometry. It states that all the trigonometric ratios in the first quadrant ($0^\circ \;{\text{to 90}}^\circ $ ) are positive, sine and cosec are positive in the second quadrant ($90^\circ {\text{ to 180}}^\circ $ ), tan and cot are positive in the third quadrant ($180^\circ \;{\text{to 270}}^\circ $ ) and sin and cosec are positive in the fourth quadrant ($270^\circ {\text{ to 360}}^\circ $ ).
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

