Courses
Courses for Kids
Free study material
Offline Centres
More Last updated date: 25th Nov 2023
Total views: 278.4k
Views today: 5.78k

# If $\cos \theta +\sin \theta =\sqrt{2}\cos \theta$, show that $\cos \theta -\sin \theta =\sqrt{2}\sin \theta$. Verified
278.4k+ views
Hint: We first take the square value of the equation $\cos \theta +\sin \theta =\sqrt{2}\cos \theta$. We then use the identities ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ and ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ to break the expression. Putting the value of $\cos \theta +\sin \theta =\sqrt{2}\cos \theta$, we prove that $\cos \theta -\sin \theta =\sqrt{2}\sin \theta$.

Complete step-by-step solution:
It is given that $\cos \theta +\sin \theta =\sqrt{2}\cos \theta$.
We take square values on both sides of the equation.
So, we get ${{\left( \cos \theta +\sin \theta \right)}^{2}}={{\left( \sqrt{2}\cos \theta \right)}^{2}}$. We sue the identity of ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$
Simplifying we get
\begin{align} & {{\left( \cos \theta +\sin \theta \right)}^{2}}={{\left( \sqrt{2}\cos \theta \right)}^{2}} \\ & \Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta +2\cos \theta \sin \theta =2{{\cos }^{2}}\theta \\ & \Rightarrow {{\cos }^{2}}\theta -{{\sin }^{2}}\theta =2\cos \theta \sin \theta \\ \end{align}
Now we use the factorisation identity of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
We get ${{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\left( \cos \theta +\sin \theta \right)\left( \cos \theta -\sin \theta \right)$.
So, we get $\left( \cos \theta +\sin \theta \right)\left( \cos \theta -\sin \theta \right)=2\cos \theta \sin \theta$.
We place the values given of $\cos \theta +\sin \theta =\sqrt{2}\cos \theta$ and get
\begin{align} & \left( \cos \theta +\sin \theta \right)\left( \cos \theta -\sin \theta \right)=2\cos \theta \sin \theta \\ & \Rightarrow \left( \sqrt{2}\cos \theta \right)\left( \cos \theta -\sin \theta \right)=2\cos \theta \sin \theta \\ \end{align}
Dividing both sides with $\sqrt{2}\cos \theta$, we get
\begin{align} & \left( \sqrt{2}\cos \theta \right)\left( \cos \theta -\sin \theta \right)=2\cos \theta \sin \theta \\ & \Rightarrow \cos \theta -\sin \theta =\dfrac{2\cos \theta \sin \theta }{\sqrt{2}\cos \theta }=\sqrt{2}\sin \theta \\ \end{align}
Thus, proved $\cos \theta -\sin \theta =\sqrt{2}\sin \theta$.

Note: It is important to remember that the condition to eliminate the $\cos \theta$ from both denominator and numerator is $\cos \theta \ne 0$. No domain is given for the variable $x$. The value of $\cos \theta \ne 0$ is essential. The simplified condition will be $x\ne n\pi +\dfrac{\pi }{2},n\in \mathbb{Z}$.