
If $\cos \theta +\sin \theta =\sqrt{2}\cos \theta $, show that $\cos \theta -\sin \theta =\sqrt{2}\sin \theta $.
Answer
518.7k+ views
Hint: We first take the square value of the equation $\cos \theta +\sin \theta =\sqrt{2}\cos \theta $. We then use the identities ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ and ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ to break the expression. Putting the value of $\cos \theta +\sin \theta =\sqrt{2}\cos \theta $, we prove that $\cos \theta -\sin \theta =\sqrt{2}\sin \theta $.
Complete step-by-step solution:
It is given that $\cos \theta +\sin \theta =\sqrt{2}\cos \theta $.
We take square values on both sides of the equation.
So, we get ${{\left( \cos \theta +\sin \theta \right)}^{2}}={{\left( \sqrt{2}\cos \theta \right)}^{2}}$. We sue the identity of ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$
Simplifying we get
$\begin{align}
& {{\left( \cos \theta +\sin \theta \right)}^{2}}={{\left( \sqrt{2}\cos \theta \right)}^{2}} \\
& \Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta +2\cos \theta \sin \theta =2{{\cos }^{2}}\theta \\
& \Rightarrow {{\cos }^{2}}\theta -{{\sin }^{2}}\theta =2\cos \theta \sin \theta \\
\end{align}$
Now we use the factorisation identity of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
We get ${{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\left( \cos \theta +\sin \theta \right)\left( \cos \theta -\sin \theta \right)$.
So, we get $\left( \cos \theta +\sin \theta \right)\left( \cos \theta -\sin \theta \right)=2\cos \theta \sin \theta $.
We place the values given of $\cos \theta +\sin \theta =\sqrt{2}\cos \theta $ and get
$\begin{align}
& \left( \cos \theta +\sin \theta \right)\left( \cos \theta -\sin \theta \right)=2\cos \theta \sin \theta \\
& \Rightarrow \left( \sqrt{2}\cos \theta \right)\left( \cos \theta -\sin \theta \right)=2\cos \theta \sin \theta \\
\end{align}$
Dividing both sides with $\sqrt{2}\cos \theta $, we get
\[\begin{align}
& \left( \sqrt{2}\cos \theta \right)\left( \cos \theta -\sin \theta \right)=2\cos \theta \sin \theta \\
& \Rightarrow \cos \theta -\sin \theta =\dfrac{2\cos \theta \sin \theta }{\sqrt{2}\cos \theta }=\sqrt{2}\sin \theta \\
\end{align}\]
Thus, proved $\cos \theta -\sin \theta =\sqrt{2}\sin \theta $.
Note: It is important to remember that the condition to eliminate the $\cos \theta $ from both denominator and numerator is $\cos \theta \ne 0$. No domain is given for the variable $x$. The value of $\cos \theta \ne 0$ is essential. The simplified condition will be $x\ne n\pi +\dfrac{\pi }{2},n\in \mathbb{Z}$.
Complete step-by-step solution:
It is given that $\cos \theta +\sin \theta =\sqrt{2}\cos \theta $.
We take square values on both sides of the equation.
So, we get ${{\left( \cos \theta +\sin \theta \right)}^{2}}={{\left( \sqrt{2}\cos \theta \right)}^{2}}$. We sue the identity of ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$
Simplifying we get
$\begin{align}
& {{\left( \cos \theta +\sin \theta \right)}^{2}}={{\left( \sqrt{2}\cos \theta \right)}^{2}} \\
& \Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta +2\cos \theta \sin \theta =2{{\cos }^{2}}\theta \\
& \Rightarrow {{\cos }^{2}}\theta -{{\sin }^{2}}\theta =2\cos \theta \sin \theta \\
\end{align}$
Now we use the factorisation identity of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
We get ${{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\left( \cos \theta +\sin \theta \right)\left( \cos \theta -\sin \theta \right)$.
So, we get $\left( \cos \theta +\sin \theta \right)\left( \cos \theta -\sin \theta \right)=2\cos \theta \sin \theta $.
We place the values given of $\cos \theta +\sin \theta =\sqrt{2}\cos \theta $ and get
$\begin{align}
& \left( \cos \theta +\sin \theta \right)\left( \cos \theta -\sin \theta \right)=2\cos \theta \sin \theta \\
& \Rightarrow \left( \sqrt{2}\cos \theta \right)\left( \cos \theta -\sin \theta \right)=2\cos \theta \sin \theta \\
\end{align}$
Dividing both sides with $\sqrt{2}\cos \theta $, we get
\[\begin{align}
& \left( \sqrt{2}\cos \theta \right)\left( \cos \theta -\sin \theta \right)=2\cos \theta \sin \theta \\
& \Rightarrow \cos \theta -\sin \theta =\dfrac{2\cos \theta \sin \theta }{\sqrt{2}\cos \theta }=\sqrt{2}\sin \theta \\
\end{align}\]
Thus, proved $\cos \theta -\sin \theta =\sqrt{2}\sin \theta $.
Note: It is important to remember that the condition to eliminate the $\cos \theta $ from both denominator and numerator is $\cos \theta \ne 0$. No domain is given for the variable $x$. The value of $\cos \theta \ne 0$ is essential. The simplified condition will be $x\ne n\pi +\dfrac{\pi }{2},n\in \mathbb{Z}$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

