
If $\cos \left( {x - y} \right),\cos x$ and $\cos \left( {x + y} \right)$ are in harmonic progression, then the value of $\cos x\sec \left( {\frac{y}{2}} \right)$ is:
(A) $ \pm \sqrt 2 $ (B) $ \pm \sqrt 3 $ (C) $ \pm 2$ (D) $ \pm 1$
Answer
609k+ views
Hint: Use the formula for harmonic mean between two numbers and then simplify the expression.
According to the information given in the question, $\cos \left( {x - y} \right),\cos x$ and $\cos \left( {x + y} \right)$ are in harmonic progression.
We know that, if three numbers a, b and c are in H.P. then b is the harmonic mean of a and c its value is:
$ \Rightarrow b = \frac{{2ac}}{{a + c}}$
Using this result for $\cos \left( {x - y} \right),\cos x$ and $\cos \left( {x + y} \right)$ , we’ll get:
$ \Rightarrow \cos x = \frac{{2\cos \left( {x - y} \right)\cos \left( {x + y} \right)}}{{\cos \left( {x - y} \right) + \cos \left( {x + y} \right)}} .....(i)$
And we also know that, $2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)$ . Using this result for the above expression, we’ll get:
$ \Rightarrow \cos x = \frac{{\left( {\cos 2x + \cos 2y} \right)}}{{2\cos x\cos y}}, \\
\Rightarrow 2{\cos ^2}x\cos y = \cos 2x + \cos 2y \\
$
Using $\cos 2x = 2{\cos ^2}x - 1$ , we’ll get:
\[
\Rightarrow 2{\cos ^2}x\cos y = 2{\cos ^2}x - 1 + 2{\cos ^2}y - 1, \\
\Rightarrow 2{\cos ^2}x\cos y - 2{\cos ^2}x = 2{\cos ^2}y - 2, \\
\Rightarrow 2{\cos ^2}x\left( {\cos y - 1} \right) = 2\left( {{{\cos }^2}y - 1} \right), \\
\Rightarrow {\cos ^2}x\left( {\cos y - 1} \right) = \left( {\cos y + 1} \right)\left( {\cos y - 1} \right), \\
\Rightarrow {\cos ^2}x = \cos y + 1, \\
\Rightarrow {\cos ^2}x = 2{\cos ^2}\left( {\frac{y}{2}} \right) - 1 + 1, \\
\]
\[ \Rightarrow {\cos ^2}x = 2{\cos ^2}\left( {\frac{y}{2}} \right),\]
\[
\Rightarrow \frac{{{{\cos }^2}x}}{{{{\cos }^2}\left( {\frac{y}{2}} \right)}} = 2, \\
\Rightarrow {\cos ^2}x{\sec ^2}\left( {\frac{y}{2}} \right) = 2, \\
\Rightarrow \cos x\sec \left( {\frac{y}{2}} \right) = \pm \sqrt 2 \\
\]
Therefore, the value of $\cos x\sec \left( {\frac{y}{2}} \right)$ is \[ \pm \sqrt 2 \] . Thus (A) is correct option.
Note:
Harmonic mean between two numbers a and c is always given as:
H.M. $ = \frac{{2ac}}{{a + c}}$.
But in this case, three numbers a, b and c are in harmonic progression, therefore b is the harmonic mean of a and c. So, we get:
H.M. $ = b$
$ \Rightarrow b = \frac{{2ac}}{{a + c}}$
This is what we used in the above question.
According to the information given in the question, $\cos \left( {x - y} \right),\cos x$ and $\cos \left( {x + y} \right)$ are in harmonic progression.
We know that, if three numbers a, b and c are in H.P. then b is the harmonic mean of a and c its value is:
$ \Rightarrow b = \frac{{2ac}}{{a + c}}$
Using this result for $\cos \left( {x - y} \right),\cos x$ and $\cos \left( {x + y} \right)$ , we’ll get:
$ \Rightarrow \cos x = \frac{{2\cos \left( {x - y} \right)\cos \left( {x + y} \right)}}{{\cos \left( {x - y} \right) + \cos \left( {x + y} \right)}} .....(i)$
And we also know that, $2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)$ . Using this result for the above expression, we’ll get:
$ \Rightarrow \cos x = \frac{{\left( {\cos 2x + \cos 2y} \right)}}{{2\cos x\cos y}}, \\
\Rightarrow 2{\cos ^2}x\cos y = \cos 2x + \cos 2y \\
$
Using $\cos 2x = 2{\cos ^2}x - 1$ , we’ll get:
\[
\Rightarrow 2{\cos ^2}x\cos y = 2{\cos ^2}x - 1 + 2{\cos ^2}y - 1, \\
\Rightarrow 2{\cos ^2}x\cos y - 2{\cos ^2}x = 2{\cos ^2}y - 2, \\
\Rightarrow 2{\cos ^2}x\left( {\cos y - 1} \right) = 2\left( {{{\cos }^2}y - 1} \right), \\
\Rightarrow {\cos ^2}x\left( {\cos y - 1} \right) = \left( {\cos y + 1} \right)\left( {\cos y - 1} \right), \\
\Rightarrow {\cos ^2}x = \cos y + 1, \\
\Rightarrow {\cos ^2}x = 2{\cos ^2}\left( {\frac{y}{2}} \right) - 1 + 1, \\
\]
\[ \Rightarrow {\cos ^2}x = 2{\cos ^2}\left( {\frac{y}{2}} \right),\]
\[
\Rightarrow \frac{{{{\cos }^2}x}}{{{{\cos }^2}\left( {\frac{y}{2}} \right)}} = 2, \\
\Rightarrow {\cos ^2}x{\sec ^2}\left( {\frac{y}{2}} \right) = 2, \\
\Rightarrow \cos x\sec \left( {\frac{y}{2}} \right) = \pm \sqrt 2 \\
\]
Therefore, the value of $\cos x\sec \left( {\frac{y}{2}} \right)$ is \[ \pm \sqrt 2 \] . Thus (A) is correct option.
Note:
Harmonic mean between two numbers a and c is always given as:
H.M. $ = \frac{{2ac}}{{a + c}}$.
But in this case, three numbers a, b and c are in harmonic progression, therefore b is the harmonic mean of a and c. So, we get:
H.M. $ = b$
$ \Rightarrow b = \frac{{2ac}}{{a + c}}$
This is what we used in the above question.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

