Answer
Verified
477.6k+ views
Hint: Use the formula for harmonic mean between two numbers and then simplify the expression.
According to the information given in the question, $\cos \left( {x - y} \right),\cos x$ and $\cos \left( {x + y} \right)$ are in harmonic progression.
We know that, if three numbers a, b and c are in H.P. then b is the harmonic mean of a and c its value is:
$ \Rightarrow b = \frac{{2ac}}{{a + c}}$
Using this result for $\cos \left( {x - y} \right),\cos x$ and $\cos \left( {x + y} \right)$ , we’ll get:
$ \Rightarrow \cos x = \frac{{2\cos \left( {x - y} \right)\cos \left( {x + y} \right)}}{{\cos \left( {x - y} \right) + \cos \left( {x + y} \right)}} .....(i)$
And we also know that, $2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)$ . Using this result for the above expression, we’ll get:
$ \Rightarrow \cos x = \frac{{\left( {\cos 2x + \cos 2y} \right)}}{{2\cos x\cos y}}, \\
\Rightarrow 2{\cos ^2}x\cos y = \cos 2x + \cos 2y \\
$
Using $\cos 2x = 2{\cos ^2}x - 1$ , we’ll get:
\[
\Rightarrow 2{\cos ^2}x\cos y = 2{\cos ^2}x - 1 + 2{\cos ^2}y - 1, \\
\Rightarrow 2{\cos ^2}x\cos y - 2{\cos ^2}x = 2{\cos ^2}y - 2, \\
\Rightarrow 2{\cos ^2}x\left( {\cos y - 1} \right) = 2\left( {{{\cos }^2}y - 1} \right), \\
\Rightarrow {\cos ^2}x\left( {\cos y - 1} \right) = \left( {\cos y + 1} \right)\left( {\cos y - 1} \right), \\
\Rightarrow {\cos ^2}x = \cos y + 1, \\
\Rightarrow {\cos ^2}x = 2{\cos ^2}\left( {\frac{y}{2}} \right) - 1 + 1, \\
\]
\[ \Rightarrow {\cos ^2}x = 2{\cos ^2}\left( {\frac{y}{2}} \right),\]
\[
\Rightarrow \frac{{{{\cos }^2}x}}{{{{\cos }^2}\left( {\frac{y}{2}} \right)}} = 2, \\
\Rightarrow {\cos ^2}x{\sec ^2}\left( {\frac{y}{2}} \right) = 2, \\
\Rightarrow \cos x\sec \left( {\frac{y}{2}} \right) = \pm \sqrt 2 \\
\]
Therefore, the value of $\cos x\sec \left( {\frac{y}{2}} \right)$ is \[ \pm \sqrt 2 \] . Thus (A) is correct option.
Note:
Harmonic mean between two numbers a and c is always given as:
H.M. $ = \frac{{2ac}}{{a + c}}$.
But in this case, three numbers a, b and c are in harmonic progression, therefore b is the harmonic mean of a and c. So, we get:
H.M. $ = b$
$ \Rightarrow b = \frac{{2ac}}{{a + c}}$
This is what we used in the above question.
According to the information given in the question, $\cos \left( {x - y} \right),\cos x$ and $\cos \left( {x + y} \right)$ are in harmonic progression.
We know that, if three numbers a, b and c are in H.P. then b is the harmonic mean of a and c its value is:
$ \Rightarrow b = \frac{{2ac}}{{a + c}}$
Using this result for $\cos \left( {x - y} \right),\cos x$ and $\cos \left( {x + y} \right)$ , we’ll get:
$ \Rightarrow \cos x = \frac{{2\cos \left( {x - y} \right)\cos \left( {x + y} \right)}}{{\cos \left( {x - y} \right) + \cos \left( {x + y} \right)}} .....(i)$
And we also know that, $2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)$ . Using this result for the above expression, we’ll get:
$ \Rightarrow \cos x = \frac{{\left( {\cos 2x + \cos 2y} \right)}}{{2\cos x\cos y}}, \\
\Rightarrow 2{\cos ^2}x\cos y = \cos 2x + \cos 2y \\
$
Using $\cos 2x = 2{\cos ^2}x - 1$ , we’ll get:
\[
\Rightarrow 2{\cos ^2}x\cos y = 2{\cos ^2}x - 1 + 2{\cos ^2}y - 1, \\
\Rightarrow 2{\cos ^2}x\cos y - 2{\cos ^2}x = 2{\cos ^2}y - 2, \\
\Rightarrow 2{\cos ^2}x\left( {\cos y - 1} \right) = 2\left( {{{\cos }^2}y - 1} \right), \\
\Rightarrow {\cos ^2}x\left( {\cos y - 1} \right) = \left( {\cos y + 1} \right)\left( {\cos y - 1} \right), \\
\Rightarrow {\cos ^2}x = \cos y + 1, \\
\Rightarrow {\cos ^2}x = 2{\cos ^2}\left( {\frac{y}{2}} \right) - 1 + 1, \\
\]
\[ \Rightarrow {\cos ^2}x = 2{\cos ^2}\left( {\frac{y}{2}} \right),\]
\[
\Rightarrow \frac{{{{\cos }^2}x}}{{{{\cos }^2}\left( {\frac{y}{2}} \right)}} = 2, \\
\Rightarrow {\cos ^2}x{\sec ^2}\left( {\frac{y}{2}} \right) = 2, \\
\Rightarrow \cos x\sec \left( {\frac{y}{2}} \right) = \pm \sqrt 2 \\
\]
Therefore, the value of $\cos x\sec \left( {\frac{y}{2}} \right)$ is \[ \pm \sqrt 2 \] . Thus (A) is correct option.
Note:
Harmonic mean between two numbers a and c is always given as:
H.M. $ = \frac{{2ac}}{{a + c}}$.
But in this case, three numbers a, b and c are in harmonic progression, therefore b is the harmonic mean of a and c. So, we get:
H.M. $ = b$
$ \Rightarrow b = \frac{{2ac}}{{a + c}}$
This is what we used in the above question.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths