
If $\cos \left( {540^\circ - \theta } \right) - \sin \left( {630^\circ - \theta } \right)$ is equal to
A.0
B.$2\cos \theta $
C.$2\sin \theta $
D.$\sin \theta - \cos \theta $
Answer
552k+ views
Hint: Here, we will break the given angle into two angles such that we know the value of either of the angles or that angle is present on the quadrants. After breaking the angle, we will solve them using quadrants for trigonometric function and hence, find the required answer.
Complete step-by-step answer:
We have to solve $\cos \left( {540^\circ - \theta } \right) - \sin \left( {630^\circ - \theta } \right)$.
First of all, we will draw the quadrants:
Now, $540^\circ $ can be written as:
$540^\circ = \left( {360^\circ + 180^\circ } \right)$
Also, $630^\circ $ can be written as:
$630^\circ = \left( {360^\circ + 270^\circ } \right)$
Hence, substituting these values in the given expression, we get
$ \Rightarrow \cos \left( {540^\circ - \theta } \right) - \sin \left( {630^\circ - \theta } \right) = \cos \left( {360^\circ + 180^\circ - \theta } \right) - \sin \left( {360^\circ + 270^\circ - \theta } \right)$
Now, $\cos 360^\circ $ means one complete rotation.
Since, $\cos 360^\circ $ lies nearly on the fourth quadrant and on the fourth quadrant $\cos \theta $ is positive.
Therefore, $\cos 360^\circ $ is also positive.
Now, when we add any angle to $\cos 360^\circ $ it means that we are starting the second rotation. Hence, we usually neglect $360^\circ $ while solving trigonometric questions.
Now, $\cos \left( {360^\circ + 180^\circ - \theta } \right) - \sin \left( {360^\circ + 270^\circ - \theta } \right)$ can be written as:
$ \Rightarrow \cos \left( {540^\circ - \theta } \right) - \sin \left( {630^\circ - \theta } \right) = \cos \left( {180^\circ - \theta } \right) - \sin \left( {270^\circ - \theta } \right)$
Now, when we subtract any angle from $180^\circ $, then, we reach the second quadrant.
In the second quadrant, cosine is negative and due to $180^\circ $, the trigonometric function will remain the same.
Also, when we subtract any angle from $270^\circ $, then, we reach the third quadrant.
In the third quadrant, sine is negative and also, due to $270^\circ $, the trigonometric function will change, i.e. sine will change to cosine.
$ \Rightarrow \cos \left( {540^\circ - \theta } \right) - \sin \left( {630^\circ - \theta } \right) = - \cos \theta - \left( { - \cos \theta } \right)$
$ \Rightarrow \cos \left( {540^\circ - \theta } \right) - \sin \left( {630^\circ - \theta } \right) = - \cos \theta + \cos \theta = 0$
Therefore, $\cos \left( {540^\circ - \theta } \right) - \sin \left( {630^\circ - \theta } \right)$ is equal to 0.
Hence, option A is the correct answer.
Note: We should take care while solving the quadrants because in one quadrant cosine/sine is positive and in the other it is negative. If we use $0^\circ ,180^\circ $ or $360^\circ $ then the trigonometric functions remain the same. But if we use $90^\circ $ or $270^\circ $ , then we have changed the trigonometric function. Also, we can break the given angle in any sum possible but we should keep in mind that we have to break it in such a sum such that we know the value of one of those or how to solve the question using one of those angles.
Complete step-by-step answer:
We have to solve $\cos \left( {540^\circ - \theta } \right) - \sin \left( {630^\circ - \theta } \right)$.
First of all, we will draw the quadrants:
Now, $540^\circ $ can be written as:
$540^\circ = \left( {360^\circ + 180^\circ } \right)$
Also, $630^\circ $ can be written as:
$630^\circ = \left( {360^\circ + 270^\circ } \right)$
Hence, substituting these values in the given expression, we get
$ \Rightarrow \cos \left( {540^\circ - \theta } \right) - \sin \left( {630^\circ - \theta } \right) = \cos \left( {360^\circ + 180^\circ - \theta } \right) - \sin \left( {360^\circ + 270^\circ - \theta } \right)$
Now, $\cos 360^\circ $ means one complete rotation.
Since, $\cos 360^\circ $ lies nearly on the fourth quadrant and on the fourth quadrant $\cos \theta $ is positive.
Therefore, $\cos 360^\circ $ is also positive.
Now, when we add any angle to $\cos 360^\circ $ it means that we are starting the second rotation. Hence, we usually neglect $360^\circ $ while solving trigonometric questions.
Now, $\cos \left( {360^\circ + 180^\circ - \theta } \right) - \sin \left( {360^\circ + 270^\circ - \theta } \right)$ can be written as:
$ \Rightarrow \cos \left( {540^\circ - \theta } \right) - \sin \left( {630^\circ - \theta } \right) = \cos \left( {180^\circ - \theta } \right) - \sin \left( {270^\circ - \theta } \right)$
Now, when we subtract any angle from $180^\circ $, then, we reach the second quadrant.
In the second quadrant, cosine is negative and due to $180^\circ $, the trigonometric function will remain the same.
Also, when we subtract any angle from $270^\circ $, then, we reach the third quadrant.
In the third quadrant, sine is negative and also, due to $270^\circ $, the trigonometric function will change, i.e. sine will change to cosine.
$ \Rightarrow \cos \left( {540^\circ - \theta } \right) - \sin \left( {630^\circ - \theta } \right) = - \cos \theta - \left( { - \cos \theta } \right)$
$ \Rightarrow \cos \left( {540^\circ - \theta } \right) - \sin \left( {630^\circ - \theta } \right) = - \cos \theta + \cos \theta = 0$
Therefore, $\cos \left( {540^\circ - \theta } \right) - \sin \left( {630^\circ - \theta } \right)$ is equal to 0.
Hence, option A is the correct answer.
Note: We should take care while solving the quadrants because in one quadrant cosine/sine is positive and in the other it is negative. If we use $0^\circ ,180^\circ $ or $360^\circ $ then the trigonometric functions remain the same. But if we use $90^\circ $ or $270^\circ $ , then we have changed the trigonometric function. Also, we can break the given angle in any sum possible but we should keep in mind that we have to break it in such a sum such that we know the value of one of those or how to solve the question using one of those angles.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

