Answer
Verified
454.8k+ views
Hint: To solve this question, we will use some basic trigonometric identities and algebraic identities to evaluate the given expression. We have to remember $\cos e{c^2}x - {\cot ^2}x = 1$, also ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$
Complete step-by-step answer:
Given that,
$\cos ecx - \cot x = \dfrac{1}{3}$ …….. (i)
We know that,
$\cos e{c^2}x - {\cot ^2}x = 1$
Using the identity, ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$, we will expand the L.H.S,
$ \Rightarrow \cos e{c^2}x - {\cot ^2}x = \left( {\cos ecx - \cot x} \right)\left( {\cos ecx + \cot x} \right)$
Put the value of $\cos ecx - \cot x = \dfrac{1}{3}$,
$ \Rightarrow \cos e{c^2}x - {\cot ^2}x = \dfrac{1}{3}\left( {\cos ecx + \cot ax} \right)$
Equating this L.H.S with R.H.S, we will get
$ \Rightarrow \dfrac{1}{3}\left( {\cos ecx + \cot x} \right) = 1$
$ \Rightarrow \cos ecx + \cot x = 3$ ……… (ii)
Adding equation (i) and (ii), we will get
$ \Rightarrow \cos ecx + \cot x + \cos ecx - \cot x = \dfrac{1}{3} + 3$
$ \Rightarrow 2\cos ecx = \dfrac{{10}}{3}$
$ \Rightarrow \cos ecx = \dfrac{5}{3}$
Putting this value in equation (ii), we will get
$ \Rightarrow \dfrac{5}{3} + \cot x = 3$
\[ \Rightarrow \cot x = 3 - \dfrac{5}{3}\]
\[ \Rightarrow \cot x = \dfrac{4}{3}\]
Now, we know that
$ \Rightarrow \sin x = \dfrac{1}{{\cos ecx}}$
Putting the value of cosec x, we will get
$ \Rightarrow \sin x = \dfrac{1}{{\dfrac{5}{3}}}$
$ \Rightarrow \sin x = \dfrac{3}{5}$
Similarly, we know that
\[ \Rightarrow \cot x = \dfrac{{\cos x}}{{\sin x}}\]
\[ \Rightarrow \cos x = \cot x\sin x\]
Again, putting the values of sin x and cot x, we will get
\[ \Rightarrow \cos x = \dfrac{4}{3} \times \dfrac{3}{5}\]
Solving this, we will get
\[ \Rightarrow \cos x = \dfrac{4}{5}\]
We have to find out the value of ${\cos ^2}x - {\sin ^2}x$
So,
Putting the values of sin x and cos x, we will get
$ \Rightarrow {\left( {\dfrac{4}{5}} \right)^2} - {\left( {\dfrac{3}{5}} \right)^2}$
$ \Rightarrow \dfrac{{16}}{{25}} - \dfrac{9}{{25}}$
$ \Rightarrow \dfrac{7}{{25}}$
Hence, the value of ${\cos ^2}x - {\sin ^2}x$ is $\dfrac{7}{{25}}$
So, the correct answer is “Option D”.
Note: Whenever we are asked such types of questions, we have to remember the trigonometric ratios of cos x and sin x. First, we have to simplify the given expression in terms of sin x and cos x and then by solving it we will get their values. After that, we will put those values in the required expression and we will get the correct answer.
Complete step-by-step answer:
Given that,
$\cos ecx - \cot x = \dfrac{1}{3}$ …….. (i)
We know that,
$\cos e{c^2}x - {\cot ^2}x = 1$
Using the identity, ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$, we will expand the L.H.S,
$ \Rightarrow \cos e{c^2}x - {\cot ^2}x = \left( {\cos ecx - \cot x} \right)\left( {\cos ecx + \cot x} \right)$
Put the value of $\cos ecx - \cot x = \dfrac{1}{3}$,
$ \Rightarrow \cos e{c^2}x - {\cot ^2}x = \dfrac{1}{3}\left( {\cos ecx + \cot ax} \right)$
Equating this L.H.S with R.H.S, we will get
$ \Rightarrow \dfrac{1}{3}\left( {\cos ecx + \cot x} \right) = 1$
$ \Rightarrow \cos ecx + \cot x = 3$ ……… (ii)
Adding equation (i) and (ii), we will get
$ \Rightarrow \cos ecx + \cot x + \cos ecx - \cot x = \dfrac{1}{3} + 3$
$ \Rightarrow 2\cos ecx = \dfrac{{10}}{3}$
$ \Rightarrow \cos ecx = \dfrac{5}{3}$
Putting this value in equation (ii), we will get
$ \Rightarrow \dfrac{5}{3} + \cot x = 3$
\[ \Rightarrow \cot x = 3 - \dfrac{5}{3}\]
\[ \Rightarrow \cot x = \dfrac{4}{3}\]
Now, we know that
$ \Rightarrow \sin x = \dfrac{1}{{\cos ecx}}$
Putting the value of cosec x, we will get
$ \Rightarrow \sin x = \dfrac{1}{{\dfrac{5}{3}}}$
$ \Rightarrow \sin x = \dfrac{3}{5}$
Similarly, we know that
\[ \Rightarrow \cot x = \dfrac{{\cos x}}{{\sin x}}\]
\[ \Rightarrow \cos x = \cot x\sin x\]
Again, putting the values of sin x and cot x, we will get
\[ \Rightarrow \cos x = \dfrac{4}{3} \times \dfrac{3}{5}\]
Solving this, we will get
\[ \Rightarrow \cos x = \dfrac{4}{5}\]
We have to find out the value of ${\cos ^2}x - {\sin ^2}x$
So,
Putting the values of sin x and cos x, we will get
$ \Rightarrow {\left( {\dfrac{4}{5}} \right)^2} - {\left( {\dfrac{3}{5}} \right)^2}$
$ \Rightarrow \dfrac{{16}}{{25}} - \dfrac{9}{{25}}$
$ \Rightarrow \dfrac{7}{{25}}$
Hence, the value of ${\cos ^2}x - {\sin ^2}x$ is $\dfrac{7}{{25}}$
So, the correct answer is “Option D”.
Note: Whenever we are asked such types of questions, we have to remember the trigonometric ratios of cos x and sin x. First, we have to simplify the given expression in terms of sin x and cos x and then by solving it we will get their values. After that, we will put those values in the required expression and we will get the correct answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE