
If $\cos ecx - \cot x = \dfrac{1}{3}$, where $x \ne 0$, then the value of ${\cos ^2}x - {\sin ^2}x$ is
A. $\dfrac{{16}}{{25}}$
B. $\dfrac{9}{{25}}$
C. $\dfrac{8}{{25}}$
D. $\dfrac{7}{{25}}$
Answer
582.9k+ views
Hint: To solve this question, we will use some basic trigonometric identities and algebraic identities to evaluate the given expression. We have to remember $\cos e{c^2}x - {\cot ^2}x = 1$, also ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$
Complete step-by-step answer:
Given that,
$\cos ecx - \cot x = \dfrac{1}{3}$ …….. (i)
We know that,
$\cos e{c^2}x - {\cot ^2}x = 1$
Using the identity, ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$, we will expand the L.H.S,
$ \Rightarrow \cos e{c^2}x - {\cot ^2}x = \left( {\cos ecx - \cot x} \right)\left( {\cos ecx + \cot x} \right)$
Put the value of $\cos ecx - \cot x = \dfrac{1}{3}$,
$ \Rightarrow \cos e{c^2}x - {\cot ^2}x = \dfrac{1}{3}\left( {\cos ecx + \cot ax} \right)$
Equating this L.H.S with R.H.S, we will get
$ \Rightarrow \dfrac{1}{3}\left( {\cos ecx + \cot x} \right) = 1$
$ \Rightarrow \cos ecx + \cot x = 3$ ……… (ii)
Adding equation (i) and (ii), we will get
$ \Rightarrow \cos ecx + \cot x + \cos ecx - \cot x = \dfrac{1}{3} + 3$
$ \Rightarrow 2\cos ecx = \dfrac{{10}}{3}$
$ \Rightarrow \cos ecx = \dfrac{5}{3}$
Putting this value in equation (ii), we will get
$ \Rightarrow \dfrac{5}{3} + \cot x = 3$
\[ \Rightarrow \cot x = 3 - \dfrac{5}{3}\]
\[ \Rightarrow \cot x = \dfrac{4}{3}\]
Now, we know that
$ \Rightarrow \sin x = \dfrac{1}{{\cos ecx}}$
Putting the value of cosec x, we will get
$ \Rightarrow \sin x = \dfrac{1}{{\dfrac{5}{3}}}$
$ \Rightarrow \sin x = \dfrac{3}{5}$
Similarly, we know that
\[ \Rightarrow \cot x = \dfrac{{\cos x}}{{\sin x}}\]
\[ \Rightarrow \cos x = \cot x\sin x\]
Again, putting the values of sin x and cot x, we will get
\[ \Rightarrow \cos x = \dfrac{4}{3} \times \dfrac{3}{5}\]
Solving this, we will get
\[ \Rightarrow \cos x = \dfrac{4}{5}\]
We have to find out the value of ${\cos ^2}x - {\sin ^2}x$
So,
Putting the values of sin x and cos x, we will get
$ \Rightarrow {\left( {\dfrac{4}{5}} \right)^2} - {\left( {\dfrac{3}{5}} \right)^2}$
$ \Rightarrow \dfrac{{16}}{{25}} - \dfrac{9}{{25}}$
$ \Rightarrow \dfrac{7}{{25}}$
Hence, the value of ${\cos ^2}x - {\sin ^2}x$ is $\dfrac{7}{{25}}$
So, the correct answer is “Option D”.
Note: Whenever we are asked such types of questions, we have to remember the trigonometric ratios of cos x and sin x. First, we have to simplify the given expression in terms of sin x and cos x and then by solving it we will get their values. After that, we will put those values in the required expression and we will get the correct answer.
Complete step-by-step answer:
Given that,
$\cos ecx - \cot x = \dfrac{1}{3}$ …….. (i)
We know that,
$\cos e{c^2}x - {\cot ^2}x = 1$
Using the identity, ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$, we will expand the L.H.S,
$ \Rightarrow \cos e{c^2}x - {\cot ^2}x = \left( {\cos ecx - \cot x} \right)\left( {\cos ecx + \cot x} \right)$
Put the value of $\cos ecx - \cot x = \dfrac{1}{3}$,
$ \Rightarrow \cos e{c^2}x - {\cot ^2}x = \dfrac{1}{3}\left( {\cos ecx + \cot ax} \right)$
Equating this L.H.S with R.H.S, we will get
$ \Rightarrow \dfrac{1}{3}\left( {\cos ecx + \cot x} \right) = 1$
$ \Rightarrow \cos ecx + \cot x = 3$ ……… (ii)
Adding equation (i) and (ii), we will get
$ \Rightarrow \cos ecx + \cot x + \cos ecx - \cot x = \dfrac{1}{3} + 3$
$ \Rightarrow 2\cos ecx = \dfrac{{10}}{3}$
$ \Rightarrow \cos ecx = \dfrac{5}{3}$
Putting this value in equation (ii), we will get
$ \Rightarrow \dfrac{5}{3} + \cot x = 3$
\[ \Rightarrow \cot x = 3 - \dfrac{5}{3}\]
\[ \Rightarrow \cot x = \dfrac{4}{3}\]
Now, we know that
$ \Rightarrow \sin x = \dfrac{1}{{\cos ecx}}$
Putting the value of cosec x, we will get
$ \Rightarrow \sin x = \dfrac{1}{{\dfrac{5}{3}}}$
$ \Rightarrow \sin x = \dfrac{3}{5}$
Similarly, we know that
\[ \Rightarrow \cot x = \dfrac{{\cos x}}{{\sin x}}\]
\[ \Rightarrow \cos x = \cot x\sin x\]
Again, putting the values of sin x and cot x, we will get
\[ \Rightarrow \cos x = \dfrac{4}{3} \times \dfrac{3}{5}\]
Solving this, we will get
\[ \Rightarrow \cos x = \dfrac{4}{5}\]
We have to find out the value of ${\cos ^2}x - {\sin ^2}x$
So,
Putting the values of sin x and cos x, we will get
$ \Rightarrow {\left( {\dfrac{4}{5}} \right)^2} - {\left( {\dfrac{3}{5}} \right)^2}$
$ \Rightarrow \dfrac{{16}}{{25}} - \dfrac{9}{{25}}$
$ \Rightarrow \dfrac{7}{{25}}$
Hence, the value of ${\cos ^2}x - {\sin ^2}x$ is $\dfrac{7}{{25}}$
So, the correct answer is “Option D”.
Note: Whenever we are asked such types of questions, we have to remember the trigonometric ratios of cos x and sin x. First, we have to simplify the given expression in terms of sin x and cos x and then by solving it we will get their values. After that, we will put those values in the required expression and we will get the correct answer.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

