Answer

Verified

408.9k+ views

**Hint:**We first apply the formula of ${{\cos }^{-1}}x+{{\cos }^{-1}}y$ on the left hand side of the given equation. We then simplify the equation, and square it. Rearranging the terms and applying some basic trigonometric formulae, we get $\left( A \right)$ as the correct option.

**Complete step by step answer:**

The given equation is

${{\cos }^{-1}}x+{{\cos }^{-1}}\left( \dfrac{y}{2} \right)=\alpha $

We know the formula that ${{\cos }^{-1}}x+{{\cos }^{-1}}y={{\cos }^{-1}}\left( xy+\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \right)$ . Thus, applying this formula in the above equation the equation thus becomes,

$\Rightarrow {{\cos }^{-1}}\left( x\left( \dfrac{y}{2} \right)+\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{\left( \dfrac{y}{2} \right)}^{2}} \right)} \right)=\alpha $

Taking $\text{cosine}$ on both sides on the above equation, we get,

$\Rightarrow \cos \left( {{\cos }^{-1}}\left( x\left( \dfrac{y}{2} \right)+\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{\left( \dfrac{y}{2} \right)}^{2}} \right)} \right) \right)=\cos \alpha $

We know the simple formula that $\cos \left( {{\cos }^{-1}}x \right)=\cos x$ . So, applying this in the above equation, the equation thus becomes,

$\Rightarrow x\left( \dfrac{y}{2} \right)+\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{\left( \dfrac{y}{2} \right)}^{2}} \right)}=\cos \alpha $

Simplifying the above equation, we get,

\[\Rightarrow \dfrac{xy}{2}+\sqrt{\left( 1-{{x}^{2}} \right)\left( \dfrac{4-{{y}^{2}}}{4} \right)}=\cos \alpha \]

Further simplifying the above equation, the equation thus becomes,

\[\Rightarrow \dfrac{xy}{2}+\dfrac{\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)}}{2}=\cos \alpha \]

Multiplying both sides of the above equation by $2$ , we get,

\[\Rightarrow xy+\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)}=2\cos \alpha \]

Taking $\cos \alpha $ to the left hand side of the above equation and \[\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)}\] to the right hand side of the above equation, we get,

\[\Rightarrow xy-2\cos \alpha =-\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)}\]

Squaring both sides of the above equation, the equation thus becomes,

\[\Rightarrow {{\left( xy-2\cos \alpha \right)}^{2}}={{\left( -\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)} \right)}^{2}}\]

Evaluating the above equation, we get

\[\Rightarrow {{x}^{2}}{{y}^{2}}-4xy\cos \alpha +4{{\cos }^{2}}\alpha =\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)\]

Opening the brackets in the above equation, we get,

\[\Rightarrow {{x}^{2}}{{y}^{2}}-4xy\cos \alpha +4{{\cos }^{2}}\alpha =4-4{{x}^{2}}-{{y}^{2}}+{{x}^{2}}{{y}^{2}}\]

Subtracting \[{{x}^{2}}{{y}^{2}}\] from both sides of the above equation, we get,

\[\Rightarrow -4xy\cos \alpha +4{{\cos }^{2}}\alpha =4-4{{x}^{2}}-{{y}^{2}}\]

Bringing the terms $4{{x}^{2}},{{y}^{2}}$ to the left hand side of the above equation and the term \[4{{\cos }^{2}}\alpha \] to the right hand side of the above equation, we get,

\[\Rightarrow 4{{x}^{2}}+{{y}^{2}}-4xy\cos \alpha =4-4{{\cos }^{2}}\alpha \]

Taking $4$ common in the right hand side of the above equation, we get,

\[\Rightarrow 4{{x}^{2}}+{{y}^{2}}-4xy\cos \alpha =4\left( 1-{{\cos }^{2}}\alpha \right)\]

We know that \[1-{{\cos }^{2}}\alpha ={{\sin }^{2}}\alpha \] . Thus, applying this formula in the above equation, we get,

\[\Rightarrow 4{{x}^{2}}+{{y}^{2}}-4xy\cos \alpha =4{{\sin }^{2}}\alpha \]

Rearranging the terms of the above equation, we get,

\[\Rightarrow 4{{x}^{2}}-4xy\cos \alpha +{{y}^{2}}=4{{\sin }^{2}}\alpha \]

This is nothing but the thing that we have to prove. Therefore, we can conclude that \[4{{x}^{2}}-4xy\cos \alpha +{{y}^{2}}\] is equal to \[4{{\sin }^{2}}\alpha \] which is option $\left( A \right)$ .

**Note:**We must be very careful while carrying out the square as this expression deals with a little complex terms and students are prone to make mistakes here. This problem can also be solved by taking some values for $x,y,\alpha $ and find out which of the following options gives the correct answer. Let’s take $x=0,y=1$ . Then, $\alpha $ becomes ${{\cos }^{-1}}0-{{\cos }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{2}-\dfrac{\pi }{3}=\dfrac{\pi }{6}$ . The expression becomes $4{{\left( 0 \right)}^{2}}-4\left( 0 \right)\left( 1 \right)\cos \left( \dfrac{\pi }{6} \right)+{{\left( 1 \right)}^{2}}=1$ . Out of the following options, only $\left( A \right)$ satisfies by putting $\alpha =\dfrac{\pi }{6}$.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Choose the antonym of the word given below Furious class 9 english CBSE

How do you graph the function fx 4x class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Change the following sentences into negative and interrogative class 10 english CBSE