Answer
Verified
495k+ views
Hint: Here we want to find a number of ways in which we can make combinations of letters, where T will also occur. So select two alike letters between (S,S), two different letters, then one S and three different letters and last one as no S and 4 different letters, and add these three. You will get the answer.
So we are given the word “METAPHYSICS”.
So we want to find what is given above.
So for that, first, we should find out how many ways the word can be arranged by taking only $5$ letters at a time.
So the formula for permutations with repeated elements is as follows when $k$ out of $n$ elements are indistinguishable. So for example, if we have a total number of books as $n$, with $k$ copies of the same book, the number of different permutations for arranging all the $n$ books is $\dfrac{n!}{k!}$.
Sometimes, we want to count all of the possible ways that a single set of objects can be selected without regard to the order in which they are selected.
A combination is a selection of all or part of a set of objects, without regard to the order in which they were selected. This means that $xyz$ it is considered the same combination $zyx$.
The number of combinations of $n$ objects taken $r$ at a time is denoted by ${}^{n}{{C}_{r}}$.
Where ${}^{n}{{C}_{r}}=\dfrac{n!}{r!(n-r)!}$
So now there are $11$ letters in the word “METAPHYSICS”.
There are $11$ letters T, S, S, and $8$ more letters, all different from each other. Since T is a must, we have to select only $4$ out of the remaining letters that are S, S, and $8$ other different letters.
So in question, it is mentioned that we have to find only combinations.
So no need to consider arrangements.
So now selecting two alike letters from (S, S) and two other different letters from the rest, the number of combinations $={}^{2}{{C}_{2}}{}^{8}{{C}_{2}}$…………. (1)
Next, selecting one S and three other different letters from the rest, the number of combinations $={}^{2}{{C}_{1}}{}^{8}{{C}_{3}}$ ……………(2)
And now selecting no S and four other different letters from the rest, the number of combinations $={}^{8}{{C}_{4}}$ ………………(3)
Hence now total number of combinations, in which T occurs is$={}^{2}{{C}_{2}}{}^{8}{{C}_{2}}+{}^{2}{{C}_{1}}{}^{8}{{C}_{3}}+{}^{8}{{C}_{4}}$
So simplifying further, we get,
$=1\times 28+2\times 56+70$
$=210$ ways.
If combinations of letters are formed by taking only $5$ letters at a time out of all the letters of the word “METAPHYSICS”, then T will occur in $210$ ways.
Note: Read the question in a careful manner. You should know the difference between combinations and arrangements. Also here no arrangements are used only combinations are used. Don’t jumble yourself and confuse between the letters. See what is asked and solve it accordingly. Sometimes silly mistakes occur in this ${}^{n}{{C}_{r}}=\dfrac{n!}{r!(n-r)!}$ avoid the mistakes.
So we are given the word “METAPHYSICS”.
So we want to find what is given above.
So for that, first, we should find out how many ways the word can be arranged by taking only $5$ letters at a time.
So the formula for permutations with repeated elements is as follows when $k$ out of $n$ elements are indistinguishable. So for example, if we have a total number of books as $n$, with $k$ copies of the same book, the number of different permutations for arranging all the $n$ books is $\dfrac{n!}{k!}$.
Sometimes, we want to count all of the possible ways that a single set of objects can be selected without regard to the order in which they are selected.
A combination is a selection of all or part of a set of objects, without regard to the order in which they were selected. This means that $xyz$ it is considered the same combination $zyx$.
The number of combinations of $n$ objects taken $r$ at a time is denoted by ${}^{n}{{C}_{r}}$.
Where ${}^{n}{{C}_{r}}=\dfrac{n!}{r!(n-r)!}$
So now there are $11$ letters in the word “METAPHYSICS”.
There are $11$ letters T, S, S, and $8$ more letters, all different from each other. Since T is a must, we have to select only $4$ out of the remaining letters that are S, S, and $8$ other different letters.
So in question, it is mentioned that we have to find only combinations.
So no need to consider arrangements.
So now selecting two alike letters from (S, S) and two other different letters from the rest, the number of combinations $={}^{2}{{C}_{2}}{}^{8}{{C}_{2}}$…………. (1)
Next, selecting one S and three other different letters from the rest, the number of combinations $={}^{2}{{C}_{1}}{}^{8}{{C}_{3}}$ ……………(2)
And now selecting no S and four other different letters from the rest, the number of combinations $={}^{8}{{C}_{4}}$ ………………(3)
Hence now total number of combinations, in which T occurs is$={}^{2}{{C}_{2}}{}^{8}{{C}_{2}}+{}^{2}{{C}_{1}}{}^{8}{{C}_{3}}+{}^{8}{{C}_{4}}$
So simplifying further, we get,
$=1\times 28+2\times 56+70$
$=210$ ways.
If combinations of letters are formed by taking only $5$ letters at a time out of all the letters of the word “METAPHYSICS”, then T will occur in $210$ ways.
Note: Read the question in a careful manner. You should know the difference between combinations and arrangements. Also here no arrangements are used only combinations are used. Don’t jumble yourself and confuse between the letters. See what is asked and solve it accordingly. Sometimes silly mistakes occur in this ${}^{n}{{C}_{r}}=\dfrac{n!}{r!(n-r)!}$ avoid the mistakes.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE