Answer
Verified
435.6k+ views
Hint: We can write the given summation as $3\sum\limits_{n=0}^{n}{nC_{n}^{2}}-\sum\limits_{n=0}^{n}{C_{n}^{2}}$. We find the binomial expansion of $A={{\left( 1+x \right)}^{n}},B={{\left( 1+\dfrac{1}{x} \right)}^{n}}$ and then differentiate $A$to get$D$. We multiply respective sides of $A,B$ and equate the constant term to get$\sum\limits_{n=0}^{n}{C_{n}^{2}}$. We multiply respective sides of $A,B$ and equate coefficient of ${{x}^{-1}}$ to get$\sum\limits_{n=0}^{n}{nC_{n}^{2}}$.\[\]
Complete step-by-step solution
The given summation is
\[\left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}\]
We can write the above expression as a summation of the general term $\left( 3n-1 \right)C_{n}^{2}$ where $n=0,1,2,...n$. We have
\[\begin{align}
& \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=\sum\limits_{n=0}^{n}{\left( 3n-1 \right)C_{n}^{2}} \\
& \Rightarrow \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=3\sum\limits_{n=0}^{n}{nC_{n}^{2}}-\sum\limits_{n=0}^{n}{C_{n}^{2}}.....(1) \\
\end{align}\]
We know that the binomial expansion of ${{\left( 1+x \right)}^{n}}$ is,
\[{{\left( 1+x \right)}^{n}}={{C}_{0}}+{{C}_{1}}x+{{C}_{2}}{{x}^{2}}...+{{C}_{n}}{{x}^{n}}.....(2)\]
We know that the binomial of coefficient of ${{x}^{k}},k\in \left\{ 0,1,2,...n \right\}$ in above expression is${}^{n}{{C}_{k}}$. Let us substitute $\dfrac{1}{x}$ instead of $x$ to have,
\[{{\left( 1+\dfrac{1}{x} \right)}^{n}}={{C}_{0}}+{{C}_{1}}\dfrac{1}{x}+{{C}_{2}}\dfrac{1}{{{x}^{2}}}...+{{C}_{n}}\dfrac{1}{{{x}^{n}}}....(3)\]
We multiply equation (2) and (3) to have,
\[\begin{align}
& {{\left( 1+x \right)}^{n}}{{\left( 1+\dfrac{1}{x} \right)}^{n}}=C_{0}^{2}+{{C}_{0}}\left( x+\dfrac{1}{x} \right)+...+{{C}_{1}}{{C}_{0}}x+C_{1}^{2}... \\
& \Rightarrow \dfrac{{{\left( 1+x \right)}^{2n}}}{{{x}^{n}}}=C_{0}^{2}+{{C}_{0}}\left( x+\dfrac{1}{x} \right)+...+{{C}_{1}}{{C}_{0}}x+C_{1}^{2}... \\
\end{align}\]
We observe that the constant term in the in the right hand side of the above equation is$C_{0}^{2}+C_{1}^{2}+...+C_{n}^{2}$. The coefficient of ${{x}^{n}}$in the numerator ${{\left( 1+x \right)}^{2n}}$ of the fraction at the left hand side is $^{2n}{{C}_{n}}$. If we divide the term with coefficient of ${{x}^{n}}$ by ${{x}^{n}}$ as it exists in the denominator we will have the constant term at the left hand side which is $^{2n}{{C}_{n}}$. So we equate the coefficients of both side and have,
\[{}^{2n}{{C}_{n}}=C_{0}^{2}+C_{1}^{2}+...+C_{n}^{2}=\sum\limits_{n=0}^{n}{C_{n}^{2}}....(4)\]
Let us differentiate equation (2) with respect to $x$ and get
\[n{{\left( 1+x \right)}^{n-1}}=0\cdot {{C}_{0}}+1\cdot {{C}_{1}}+2{{C}_{2}}x...+n{{C}_{n}}{{x}^{n-1}}.....(5)\]
We multiply respective sides of equation (3) and (5) to have,
\[\begin{align}
& n{{\left( 1+x \right)}^{n-1}}{{\left( 1+\dfrac{1}{x} \right)}^{n}}=\left( 0\cdot {{C}_{0}}+1\cdot {{C}_{1}}+2{{C}_{2}}x...+n{{C}_{n}}{{x}^{n-1}} \right)\left( {{C}_{0}}+{{C}_{1}}\dfrac{1}{x}+...+{{C}_{n}}\dfrac{1}{{{x}^{n}}} \right) \\
& \Rightarrow \dfrac{n{{\left( 1+x \right)}^{2n-1}}}{{{x}^{n}}}=\left( 0\cdot {{C}_{0}}+1\cdot {{C}_{1}}+2{{C}_{2}}x...+n{{C}_{n}}{{x}^{n-1}} \right)\left( {{C}_{0}}+{{C}_{1}}\dfrac{1}{x}+...+{{C}_{n}}\dfrac{1}{{{x}^{n}}} \right) \\
\end{align}\]
We observe that the coefficient of $\dfrac{1}{x}={{x}^{-1}}$ in the in the right hand side of the above equation is $0\cdot C_{0}^{2}+1\cdot C_{1}^{2}+2C_{2}^{2}...+nC_{n}^{2}$. The coefficient of ${{x}^{n-1}}$in the numerator ${{\left( 1+x \right)}^{2n-1}}$ of the fraction at the left hand side is $^{2n-1}{{C}_{n-1}}$. If we divide the term with coefficient of ${{x}^{n-1}}$ by ${{x}^{n}}$ as it exists in the denominator we will have the coefficient of ${{x}^{-1}}$ at the left hand side which is ${n^{2n - 1}}{C_{n - 1}}$. We equate the coefficients of both side and have,
\[\begin{align}
& n{}^{2n-1}{{C}_{n-1}}=0\cdot C_{0}^{2}+1\cdot C_{1}^{2}+2C_{2}^{2}...+nC_{n}^{2}=\sum\limits_{n=0}^{n}{nC_{n}^{2}} \\
& \Rightarrow 3n{}^{2n-1}{{C}_{n-1}}=3\sum\limits_{n=0}^{n}{nC_{n}^{2}} \\
& \Rightarrow 3\dfrac{n}{2}{}^{2n}{{C}_{n}}=3\sum\limits_{n=0}^{n}{nC_{n}^{2}}\left( \because {}^{2n}{{C}_{n}}=2{}^{2n-1}{{C}_{n-1}} \right)...(6) \\
\end{align}\]
We put the values obtained the values from equation (4) and (6) in equation (1) to have,
\[\begin{align}
& \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=3\sum\limits_{n=0}^{n}{nC_{n}^{2}}-\sum\limits_{n=0}^{n}{C_{n}^{2}} \\
& \Rightarrow \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=3\dfrac{n}{2}{}^{2n}{{C}_{n}}-{}^{2n}{{C}_{n}} \\
& \Rightarrow \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=\left( \dfrac{3n-1}{2} \right){}^{2n}{{C}_{n}} \\
\end{align}\]
So the correct option is B.
Note: We also note that that coefficient of $k$ and $n-k$ are same in the binomial expansion of ${{\left( 1+x \right)}^{n}}$. We also note that the binomial expansion of ${{\left( 1+x \right)}^{n}}$ is specialized form of binomial expansion of ${{\left( x+y \right)}^{n}}$ which is given as$\left( ^{n}{{C}_{0}} \right){{x}^{n}}{{y}^{0}}+\left( ^{n}{{C}_{1}} \right){{x}^{n-1}}y+...+\left( ^{n}{{C}_{1}} \right){{x}^{0}}{{y}^{n}}$ where $n$ is always a non-negative integers and $x,y$ are real numbers.
Complete step-by-step solution
The given summation is
\[\left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}\]
We can write the above expression as a summation of the general term $\left( 3n-1 \right)C_{n}^{2}$ where $n=0,1,2,...n$. We have
\[\begin{align}
& \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=\sum\limits_{n=0}^{n}{\left( 3n-1 \right)C_{n}^{2}} \\
& \Rightarrow \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=3\sum\limits_{n=0}^{n}{nC_{n}^{2}}-\sum\limits_{n=0}^{n}{C_{n}^{2}}.....(1) \\
\end{align}\]
We know that the binomial expansion of ${{\left( 1+x \right)}^{n}}$ is,
\[{{\left( 1+x \right)}^{n}}={{C}_{0}}+{{C}_{1}}x+{{C}_{2}}{{x}^{2}}...+{{C}_{n}}{{x}^{n}}.....(2)\]
We know that the binomial of coefficient of ${{x}^{k}},k\in \left\{ 0,1,2,...n \right\}$ in above expression is${}^{n}{{C}_{k}}$. Let us substitute $\dfrac{1}{x}$ instead of $x$ to have,
\[{{\left( 1+\dfrac{1}{x} \right)}^{n}}={{C}_{0}}+{{C}_{1}}\dfrac{1}{x}+{{C}_{2}}\dfrac{1}{{{x}^{2}}}...+{{C}_{n}}\dfrac{1}{{{x}^{n}}}....(3)\]
We multiply equation (2) and (3) to have,
\[\begin{align}
& {{\left( 1+x \right)}^{n}}{{\left( 1+\dfrac{1}{x} \right)}^{n}}=C_{0}^{2}+{{C}_{0}}\left( x+\dfrac{1}{x} \right)+...+{{C}_{1}}{{C}_{0}}x+C_{1}^{2}... \\
& \Rightarrow \dfrac{{{\left( 1+x \right)}^{2n}}}{{{x}^{n}}}=C_{0}^{2}+{{C}_{0}}\left( x+\dfrac{1}{x} \right)+...+{{C}_{1}}{{C}_{0}}x+C_{1}^{2}... \\
\end{align}\]
We observe that the constant term in the in the right hand side of the above equation is$C_{0}^{2}+C_{1}^{2}+...+C_{n}^{2}$. The coefficient of ${{x}^{n}}$in the numerator ${{\left( 1+x \right)}^{2n}}$ of the fraction at the left hand side is $^{2n}{{C}_{n}}$. If we divide the term with coefficient of ${{x}^{n}}$ by ${{x}^{n}}$ as it exists in the denominator we will have the constant term at the left hand side which is $^{2n}{{C}_{n}}$. So we equate the coefficients of both side and have,
\[{}^{2n}{{C}_{n}}=C_{0}^{2}+C_{1}^{2}+...+C_{n}^{2}=\sum\limits_{n=0}^{n}{C_{n}^{2}}....(4)\]
Let us differentiate equation (2) with respect to $x$ and get
\[n{{\left( 1+x \right)}^{n-1}}=0\cdot {{C}_{0}}+1\cdot {{C}_{1}}+2{{C}_{2}}x...+n{{C}_{n}}{{x}^{n-1}}.....(5)\]
We multiply respective sides of equation (3) and (5) to have,
\[\begin{align}
& n{{\left( 1+x \right)}^{n-1}}{{\left( 1+\dfrac{1}{x} \right)}^{n}}=\left( 0\cdot {{C}_{0}}+1\cdot {{C}_{1}}+2{{C}_{2}}x...+n{{C}_{n}}{{x}^{n-1}} \right)\left( {{C}_{0}}+{{C}_{1}}\dfrac{1}{x}+...+{{C}_{n}}\dfrac{1}{{{x}^{n}}} \right) \\
& \Rightarrow \dfrac{n{{\left( 1+x \right)}^{2n-1}}}{{{x}^{n}}}=\left( 0\cdot {{C}_{0}}+1\cdot {{C}_{1}}+2{{C}_{2}}x...+n{{C}_{n}}{{x}^{n-1}} \right)\left( {{C}_{0}}+{{C}_{1}}\dfrac{1}{x}+...+{{C}_{n}}\dfrac{1}{{{x}^{n}}} \right) \\
\end{align}\]
We observe that the coefficient of $\dfrac{1}{x}={{x}^{-1}}$ in the in the right hand side of the above equation is $0\cdot C_{0}^{2}+1\cdot C_{1}^{2}+2C_{2}^{2}...+nC_{n}^{2}$. The coefficient of ${{x}^{n-1}}$in the numerator ${{\left( 1+x \right)}^{2n-1}}$ of the fraction at the left hand side is $^{2n-1}{{C}_{n-1}}$. If we divide the term with coefficient of ${{x}^{n-1}}$ by ${{x}^{n}}$ as it exists in the denominator we will have the coefficient of ${{x}^{-1}}$ at the left hand side which is ${n^{2n - 1}}{C_{n - 1}}$. We equate the coefficients of both side and have,
\[\begin{align}
& n{}^{2n-1}{{C}_{n-1}}=0\cdot C_{0}^{2}+1\cdot C_{1}^{2}+2C_{2}^{2}...+nC_{n}^{2}=\sum\limits_{n=0}^{n}{nC_{n}^{2}} \\
& \Rightarrow 3n{}^{2n-1}{{C}_{n-1}}=3\sum\limits_{n=0}^{n}{nC_{n}^{2}} \\
& \Rightarrow 3\dfrac{n}{2}{}^{2n}{{C}_{n}}=3\sum\limits_{n=0}^{n}{nC_{n}^{2}}\left( \because {}^{2n}{{C}_{n}}=2{}^{2n-1}{{C}_{n-1}} \right)...(6) \\
\end{align}\]
We put the values obtained the values from equation (4) and (6) in equation (1) to have,
\[\begin{align}
& \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=3\sum\limits_{n=0}^{n}{nC_{n}^{2}}-\sum\limits_{n=0}^{n}{C_{n}^{2}} \\
& \Rightarrow \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=3\dfrac{n}{2}{}^{2n}{{C}_{n}}-{}^{2n}{{C}_{n}} \\
& \Rightarrow \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=\left( \dfrac{3n-1}{2} \right){}^{2n}{{C}_{n}} \\
\end{align}\]
So the correct option is B.
Note: We also note that that coefficient of $k$ and $n-k$ are same in the binomial expansion of ${{\left( 1+x \right)}^{n}}$. We also note that the binomial expansion of ${{\left( 1+x \right)}^{n}}$ is specialized form of binomial expansion of ${{\left( x+y \right)}^{n}}$ which is given as$\left( ^{n}{{C}_{0}} \right){{x}^{n}}{{y}^{0}}+\left( ^{n}{{C}_{1}} \right){{x}^{n-1}}y+...+\left( ^{n}{{C}_{1}} \right){{x}^{0}}{{y}^{n}}$ where $n$ is always a non-negative integers and $x,y$ are real numbers.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE