
If $\bar z$ lies in the third quadrant then $z$ lies in the
$A.$ First quadrant
$B.$ Second quadrant
$C.$Third quadrant
$D.$ Fourth quadrant
Answer
605.4k+ views
Hint: This question can be solved by comparing the general value of $\bar z$ and $\bar z $when it is in the third quadrant.
Now we know that the general value of $z = x + iy$
And $\overline z = x - iy - - - - - \left( i \right)$
Now given that $\bar z$ lies in the third quadrant.
$ \Rightarrow \overline z = - x - iy - - - - - - \left( {ii} \right)$
Where the negative sign indicates that both the real part and imaginary part lies in the third quadrant.
On comparing $\left( i \right)$ and$\left( {ii} \right)$we get,
$x = - x$
Also we know that the general value of $z = x + iy$
Putting the value of $x$ in general value of $z$ we get,
$z = - x + iy$
On analyzing the above equation we can say that $z$ is in the Second quadrant because here $\left( x \right)$ coordinate is negative and$\left( y \right)$ coordinate is positive.
$\therefore $ The correct answer is $\left( B \right)$.
Note: Whenever we face such type of questions the key concept is that we should compare the given value of $\bar z$and general value of $\bar z$ so we can compare both the equations and we get the value of $x$ and we also know the general value of $z$ and on putting the value of $x$ in it we get the position of $z$.
Now we know that the general value of $z = x + iy$
And $\overline z = x - iy - - - - - \left( i \right)$
Now given that $\bar z$ lies in the third quadrant.
$ \Rightarrow \overline z = - x - iy - - - - - - \left( {ii} \right)$
Where the negative sign indicates that both the real part and imaginary part lies in the third quadrant.
On comparing $\left( i \right)$ and$\left( {ii} \right)$we get,
$x = - x$
Also we know that the general value of $z = x + iy$
Putting the value of $x$ in general value of $z$ we get,
$z = - x + iy$
On analyzing the above equation we can say that $z$ is in the Second quadrant because here $\left( x \right)$ coordinate is negative and$\left( y \right)$ coordinate is positive.
$\therefore $ The correct answer is $\left( B \right)$.
Note: Whenever we face such type of questions the key concept is that we should compare the given value of $\bar z$and general value of $\bar z$ so we can compare both the equations and we get the value of $x$ and we also know the general value of $z$ and on putting the value of $x$ in it we get the position of $z$.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

