
If $\bar z$ lies in the third quadrant then $z$ lies in the
$A.$ First quadrant
$B.$ Second quadrant
$C.$Third quadrant
$D.$ Fourth quadrant
Answer
597.3k+ views
Hint: This question can be solved by comparing the general value of $\bar z$ and $\bar z $when it is in the third quadrant.
Now we know that the general value of $z = x + iy$
And $\overline z = x - iy - - - - - \left( i \right)$
Now given that $\bar z$ lies in the third quadrant.
$ \Rightarrow \overline z = - x - iy - - - - - - \left( {ii} \right)$
Where the negative sign indicates that both the real part and imaginary part lies in the third quadrant.
On comparing $\left( i \right)$ and$\left( {ii} \right)$we get,
$x = - x$
Also we know that the general value of $z = x + iy$
Putting the value of $x$ in general value of $z$ we get,
$z = - x + iy$
On analyzing the above equation we can say that $z$ is in the Second quadrant because here $\left( x \right)$ coordinate is negative and$\left( y \right)$ coordinate is positive.
$\therefore $ The correct answer is $\left( B \right)$.
Note: Whenever we face such type of questions the key concept is that we should compare the given value of $\bar z$and general value of $\bar z$ so we can compare both the equations and we get the value of $x$ and we also know the general value of $z$ and on putting the value of $x$ in it we get the position of $z$.
Now we know that the general value of $z = x + iy$
And $\overline z = x - iy - - - - - \left( i \right)$
Now given that $\bar z$ lies in the third quadrant.
$ \Rightarrow \overline z = - x - iy - - - - - - \left( {ii} \right)$
Where the negative sign indicates that both the real part and imaginary part lies in the third quadrant.
On comparing $\left( i \right)$ and$\left( {ii} \right)$we get,
$x = - x$
Also we know that the general value of $z = x + iy$
Putting the value of $x$ in general value of $z$ we get,
$z = - x + iy$
On analyzing the above equation we can say that $z$ is in the Second quadrant because here $\left( x \right)$ coordinate is negative and$\left( y \right)$ coordinate is positive.
$\therefore $ The correct answer is $\left( B \right)$.
Note: Whenever we face such type of questions the key concept is that we should compare the given value of $\bar z$and general value of $\bar z$ so we can compare both the equations and we get the value of $x$ and we also know the general value of $z$ and on putting the value of $x$ in it we get the position of $z$.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

