
If b is greater than a as \[b > a\], then the equation \[\left( {x - a} \right)\left( {x - b} \right) - 1 = 0\], has
A. both roots in \[\left[ {a,b} \right]\]
B. both roots in \[\left( { - \infty ,a} \right)\]
C. both roots in \[\left( {b, + \infty } \right)\]
D. one root in \[\left( { - \infty ,a} \right)\] and other in \[\left( {b, + \infty } \right)\]
Answer
606k+ views
Hint: For a function \[f\left( x \right) = a{x^2} + bx + c = 0\] the discriminant is given by \[D = {b^2} - 4ac\]. If the discriminant of the function is greater than zero the function has two real and distinct values.
Complete step-by-step answer:
Let the given function be \[f\left( x \right) = \left( {x - a} \right)\left( {x - b} \right) - 1 = 0\] which can be written as \[f\left( x \right) = {x^2} - (a + b)x + ab - 1 = 0\]
We know that for the function \[f\left( x \right) = a{x^2} + bx + c = 0\] the discriminant is given by \[D = {b^2} - 4ac\]
So, discriminant of \[f\left( x \right) = {x^2} - (a + b)x + ab - 1 = 0\] is
\[
D = {\left[ { - \left( {a + b} \right)} \right]^2} - 4(ab - 1) \\
D = {a^2} + {b^2} + 2ab - 4ab + 4 \\
D = {a^2} + {b^2} - 2ab + 4 \\
D = {\left( {a - b} \right)^2} + 4 > 0 \\
\]
Since the discriminant is greater than zero, it has two real roots.
Consider,
\[f\left( a \right) = \left( {a - a} \right)\left( {a - b} \right) - 1 = - 1\]
\[f\left( b \right) = \left( {b - a} \right)\left( {b - b} \right) - 1 = - 1\]
But \[b > a\] i.e., \[a\] and \[b\] are distinct as coefficient of \[{x^2}\] is positive (it is 1) , minima of \[f\left( x \right)\] is between \[a\] and \[b\].
Hence one root will lie in interval \[\left( { - \infty ,a} \right)\] and another root will be in interval \[\left( {b, + \infty } \right)\].
Thus, the correct option is D. one root in \[\left( { - \infty ,a} \right)\] and other in \[\left( {b, + \infty } \right)\]
Note: If the discriminant of the function is less than zero then the function has imaginary roots and if the function has discriminant equal to zero then the roots are real and equal.
Complete step-by-step answer:
Let the given function be \[f\left( x \right) = \left( {x - a} \right)\left( {x - b} \right) - 1 = 0\] which can be written as \[f\left( x \right) = {x^2} - (a + b)x + ab - 1 = 0\]
We know that for the function \[f\left( x \right) = a{x^2} + bx + c = 0\] the discriminant is given by \[D = {b^2} - 4ac\]
So, discriminant of \[f\left( x \right) = {x^2} - (a + b)x + ab - 1 = 0\] is
\[
D = {\left[ { - \left( {a + b} \right)} \right]^2} - 4(ab - 1) \\
D = {a^2} + {b^2} + 2ab - 4ab + 4 \\
D = {a^2} + {b^2} - 2ab + 4 \\
D = {\left( {a - b} \right)^2} + 4 > 0 \\
\]
Since the discriminant is greater than zero, it has two real roots.
Consider,
\[f\left( a \right) = \left( {a - a} \right)\left( {a - b} \right) - 1 = - 1\]
\[f\left( b \right) = \left( {b - a} \right)\left( {b - b} \right) - 1 = - 1\]
But \[b > a\] i.e., \[a\] and \[b\] are distinct as coefficient of \[{x^2}\] is positive (it is 1) , minima of \[f\left( x \right)\] is between \[a\] and \[b\].
Hence one root will lie in interval \[\left( { - \infty ,a} \right)\] and another root will be in interval \[\left( {b, + \infty } \right)\].
Thus, the correct option is D. one root in \[\left( { - \infty ,a} \right)\] and other in \[\left( {b, + \infty } \right)\]
Note: If the discriminant of the function is less than zero then the function has imaginary roots and if the function has discriminant equal to zero then the roots are real and equal.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

